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Higher Certificate, Paper I, 2004.  Question 1 
 
 
(i) (a) P(all four favour the complex) = (0.6)4. 

P(all four oppose the complex) = (0.3)4. 
P(all four are indifferent) = (0.1)4. 

 
So P(all four think alike) = (0.6)4 + (0.3)4 + (0.1)4 = 0.1378. 

 
 

(b) P(an individual is not opposed) = 0.6 + 0.1 = 0.7. 
 

So P(none of the four is opposed) = (0.7)4 = 0.2401. 
 
 

(c) Possible favourable results are FFOI, FOOI, FOII, in any order. 
 

P(FFOI) = (0.6)2(0.3)(0.1) = 0.0108 
P(FOOI) = (0.6)(0.3)2(0.1) = 0.0054 
P(FOII) = (0.6)(0.3)(0.1)2 = 0.0018 

 

Each result can be arranged in 4!
2!1!1!

 = 12 ways. 

 
So overall probability is 12(0.0108 + 0.0054 + 0.0018) = 0.216. 

 
 

(d) From (a), P(all four in favour) = (0.6)4 = 0.1296.  From (b), P(none 
opposed) = 0.2401.  So the required conditional probability is 

 

   0.1296/0.2401  =  0.5398. 
 
 
(ii) The number in favour is binomially distributed with n = 4 and p = 0.6.  So the 

expectation (mean) is 4 × 0.6 = 2.4 and the variance is 4 × 0.6 × 0.4 = 0.96. 
 
 
(iii) P(opposed) = P(opposedyoung)P(young) + P(opposedolder)P(older) 
 

         = (0.12 × 0.25) + (p × 0.75) 
 

where p = P(opposedolder).  But we are given that P(opposed) = 0.3.  Hence 
p = 0.36. 

 
 
(iv) In samples of one "young" and three "olders", 
 
 P(exactly one opposes) = P("young" opposes, "olders" do not) 
 

         + P("young" does not oppose, one "older" opposes) 
 

= {(0.12)(0.64)3} + {3(0.88)(0.36)(0.64)2}  =  0.03146 + 0.38928  =  0.4207. 



 

 

Higher Certificate, Paper I, 2004.  Question 2 
 
 
(i) (a) The moment generating function is 
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Hence ( ) ( ) ( ) 22Var X E X E X λ= − =   . 

 
(Alternatively, the moments could be obtained from the power series 
expansion of MX(t).) 

 

(Alternatively, though with comparatively lengthy algebra, the 
moments could be obtained directly by E(X) = ΣxP(X = x) and E(X2) = 
Σx2P(X = x);  or, somewhat easier, use E[X(X – 1)] = Σx(x – 1)P(X = x) 
(this is λ2) and then Var(X) = E[X(X – 1)] + E(X) – {E(X)}2.) 

 
(c) The binomial distribution with parameters n and p may be 

approximated by the Poisson distribution with parameter np if n is 
large and p is small.  As a "rule of thumb", ½ ≤ np ≤ 10 gives an 
indication of how large n should be and how small p should be.  (If 
np > 10, a Normal approximation to the binomial may be better.) 

 
 
(ii) Let X = number of wrong calculations.  We have X ~ B(200, 0.0075). 
 

( ) ( )( )199 199200
1 0.0075 0.9925 200 0.0075 0.9925 0.3353(2)

1
P X  

= = = × × = 
 

. 

 

( ) ( ) ( )4 196200
4 0.0075 0.9925

4
P X  

= =  
 

 

 

     4 196200 199 198 197 0.0075 0.9925 0.0468(0)
4 3 2 1

× × ×= × × =
× × ×

. 
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(iii) We approximate using X ~ Poisson(200 × 0.0075 = 1.5).  With this, 
 

( ) ( )1.51 1.5 0.3347 0P X e−= = =  
 

giving a percentage error of ( )100 0.33532 0.33470
0.18%

0.33532
−

= , and 

 

( ) ( ) ( )
41.5 1.5

4 0.0470 7
4!

e
P X

−

= = =  

 

giving a percentage error of ( )100 0.04707 0.04680
0.58%

0.04680
−

= . 

 
[Note.  These percentage errors might come out slightly differently if more 
accuracy is kept in the binomial and Poisson probabilities.] 

 
Both approximations are remarkably accurate, with percentage errors well 
below 1%.  The approximation for X = 1 (one wrong calculation) is the more 
accurate of the two.  That approximation is an underestimate;  the other is an 
overestimate. 

 



 

 

Higher Certificate, Paper I, 2004.  Question 3 
 

Actual volume X ~ N(1010, 82).  Let Z ~ N(0,1). 
 
 

(i) ( ) ( )1000 10101000 1.25 0.1056
8

P X P Z P Z− < = < = < − = 
 

. 

 
 
(ii) Let Y be the total volume in a 6-pack. 
 
We have Y ~ N(6 × 1010, 64 + 64 + 64 + 64 + 64 + 64), i.e. Y ~ N(6060, 384). 
 

( ) ( )6000 60606000 3.06 0.0011
384

P Y P Z P Z− < = < = < − = 
 

. 

 
(Alternatively, could use X  ~ N(1010, 64/6) and calculate ( )1000P X < .) 
 
This probability is considerably smaller than that in part (i).  In practical terms, this is 
because there will be a tendency for heavier and lighter cartons in a 6-pack to balance 
each other out.  Alternatively, in terms of probability distributions, consider X and X :  
X  has the same mean as X but only one-sixth of the variance, so less of the lower tail 
of the distribution of X  is below the nominal volume of 1000. 
 
 
(iii) The new volume W ~ N(µ, 42), where µ is the new mean.  So we have that 

( ) 10001000
4

P W P Z µ− < = < 
 

.  We require that this probability must be no greater 

than 0.1056.  Thus the cut-off point for Z is to be z = –1.25 (as before).  Hence 
1000 1.25

4
µ− = − , giving µ = 1005. 

 
This means that 5 ml per carton could be saved, i.e. a cost saving per carton of 

5
1000

× £1.  To recover the £200, the number of cartons required is 200
5 /1000

 = 40000. 

 
 



 

 

Higher Certificate, Paper I, 2004.  Question 4 
 
 
(i) The binomial distribution with parameters n, p can be approximated by 
N(np, np(1 – p)) when n is large and p is not too near to 0 or 1.  As a "rule of thumb", 
the approximation is likely to be good if both np and np(1 – p) are > 10. 
 
Let X ~ B(n, p) and let Φ denote the c.d.f. of N(0, 1).  Using a continuity correction, 

( )
( )
1
2

1
x npP X x
np p

 + − ≤ ≈ Φ
 − 

  and  ( )
( )
1
2

1
x npP X x
np p

 − − < ≈ Φ
 − 

. 

 
 
The 95% confidence interval for p uses the estimated variance ( )ˆ ˆ1 /p p n− , giving the 
approximate interval 
 

 ( ) ( )ˆ ˆ ˆ ˆ1 1
ˆ ˆ1.96 1.96

p p p p
p p p

n n
− −

− < < +  

 

The estimate of p is 30ˆ 0.6
50

p = = , so  ( ) ( )( )ˆ ˆ1 0.6 0.4
0.0693

50
p p

n
−

= = .  Thus 

the approximate interval is 
 

 ( ) ( )0.6 1.96 0.0693 , 0.6 1.96 0.0693− × + ×  

 
i.e.  (0.464, 0.736). 
 
 
(ii) P(neither hits) = (1 – p)2.  Therefore P(at least 1 hit) = 1 – (1 – p)2 = p(2 – p).  
We estimate this by (0.6)(2 – 0.6) = 0.84. 
 
 
(iii) When p = 0.464 (lower limit of interval in part (i)), we have p(2 – p) = 0.713.  
Similarly, when p = 0.736, we have p(2 – p) = 0.930.  Thus (0.713, 0.930) is the 
required interval. 
 
 
(iv) When n pairs are fired, P(all miss) = [(1 – p)2]n, estimated by (0.16)n.  Hence 
(0.16)n < 0.0005 is required.  Solving this by taking logarithms to base 10, we have 
n log10(0.16) < log10(0.0005), i.e. –0.79588n < –3.30103 which gives n > 4.148.  so n 
must be at least 5. 
 



 

 

Higher Certificate, Paper I, 2004.  Question 5 
 
 

(i)   ( ) , 0; 0tf t e tλλ λ−= > >  
 

(a) Sketch of f (t). 
 
[NOTE. The curve should of course appear as a smooth decaying exponential; 
it might not do so, due to the limits of electronic reproduction.] 

 

 

 (b) C.d.f. is ( ) ( )
0

0

1 1
t

t v v tF t P T t e dv e eλ λ λλ λ
λ

− − − = ≤ = = − = −  ∫ . 

 
 (c) ( ) ( ) ( ) a bP a T b F b F a e eλ λ−< ≤ = − = − . 
 
 
(ii) Assume all settlements of invoices are independent. 
 

P(50 in first week) = ( ){ } ( )5050
1 1F e λ−= − , because T ≤ 1 for all these 50. 

 
Likewise, 1 < T ≤ 2 for the 35 in the second week, so we have P(35 in second week) = 

( ) ( ){ }35
2 1F F−  = ( )352e eλ λ− −− . 

 

The remaining 15 have T > 2, which has probability 1 – P(T ≤ 2) = 2e λ− , and thus 
P(15 after week 2) = ( )152e λ− . 
 
The likelihood is therefore the product  
 

 ( ) ( ) ( ) ( )50 35 152 21L k e e e eλ λ λ λλ − − − −= − −  

 
where k is a constant of proportionality. 
 
 
Continued on next page 

f (t)

t



 

 

Taking logarithms (base e), 
 

( ) ( ) ( ){ } ( )2log log 50log 1 35log 1 15logL k e e e eλ λ λ λλ − − − −= + − + − +  
 

   ( ) ( ) ( )log 85log 1 35 30 log 85log 1 65k e k eλ λλ λ− −= + − − + = + − − . 
 

85 85log 65 65
1 1

d eL
d e e

λ

λ λλ

−

−∴ = − = −
− −

. 

 
Equating to zero, ( )85 65 1eλ= −  or 150 / 65eλ = , so that ( )ˆ log 150 / 65 0.836λ = = . 
 

[It is easy to check that this is indeed a maximum;  e.g. 
( )

2

22

85log 0
1

d L
d eλλ

= − <
−

.] 

 
 
(iii) 0.836 0.836 1.6721 0.5666; 0.43344 0.18787 0.2456e e e− − −− = − = − = .  Hence, out 
of 100 invoices, 56.66, 24.56 and 18.78 would be expected to be paid, on this model, 
in weeks 1, 2 and later.  The actual numbers were 50, 35 and 15.  The prediction for 
the second week is a long way from what happened, balanced by smaller 
discrepancies in the other two periods.  This does not seem very satisfactory. 



 

 

Higher Certificate, Paper I, 2004.  Question 6 
 
 

( ) 1 , 1; 0k

kf x x k
x += ≥ >  

 
 
(i) Sketch of f (x). 
 
[NOTE.  The curve should of course appear as a smooth curve;  it might not do so, 
due to the limits of electronic reproduction.] 
 

 

C.d.f. is ( ) ( ) 11
1

1 11
x

x

k k k

kF x P X x du
u u x+

 = ≤ = = − = −  ∫    (for x ≥ 1). 

 
 
 
(ii) Median M has ½ = F(m) = 1 – M –k, so ½ = M –k and hence M = 21/k. 
 
Lower quartile Q1 has ¼ = F(Q1) = 1 – Q1

–k, so ¾ = Q1
–k, i.e. Q1 = (4/3)1/k. 

 
Upper quartile Q3 has ¾ = F(Q3) = 1 – Q3

–k, so Q3 = (4)1/k. 
 

Hence the semi-interquartile range is 
1/

1/ 4
4

3
1
2

k
k   −  

   
. 
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f (x)

x 1



 

 

(iii) ( ) ( ) ( ) 11 1
1

1 1k k

k k kE X xf x dx dx
x k x k

∞
∞ ∞

−

 −= = = = − − 
∫ ∫ . 

 

( ) ( ) ( )
2 2

1 21 1
1

2 2k k

k k kE X x f x dx dx
x k x k

∞
∞ ∞

− −

 −= = = = − − 
∫ ∫ . 

 

( ) ( ) ( ){ }
( )

2
22

2Var
2 1

k kX E X E X
k k

∴ = − = −
− −

 

 

( ) ( )
( ) ( ){ } ( ) ( )

2
2 21 2

2 1 1 2
k kk k k

k k k k
= − − − =

− − − −
. 

 

( )( ) 1/( 1)
/( 1)

1 1 k

k kk k
k k

k kP X E X dx
x x k

∞
∞

+−
−

−   > = = − =      ∫ , or this can be written down 

directly from the c.d.f. found in part (i). 
 
 
 
(iv) For the case k = 3, 
 
 (a) M = 21/3 in the units given, or £12599, 
 
 (b) mean = 3/2 in the units given, or £15000, 
 

 (c) inserting X = 10, P(X ≤ 10) = 3

11
10

− , so P(X > 10) = 3

1
10

, i.e. 0.1%. 

 
 
 
 



 

 

Higher Certificate, Paper I, 2004.  Question 7 
 

(i) ( ) 2

0
0

1 1 1
2 2

xE X dx x
θ

θ
θ

θ θ
 = = =  ∫ . 

 

( )
2

2 3 2

0
0

1 1 1
3 3

xE X dx x
θ

θ
θ

θ θ
 = = =  ∫ . 

 

( ) ( ) ( ){ }
2

22 2 21 1 1Var
3 2 12

X E X E X θ θ θ ∴ = − = − = 
 

. 

 
 
(ii) P(longest offcut is ≤ x) = P(all n offcuts are ≤ x). 
 

The c.d.f. for each Xi is ( ) ( )
0

0

x
x du u xF x P X x

θ θ θ
 = ≤ = = =  ∫ , and the Xi are all 

independent.  Therefore P(all n offcuts are ≤ x) = ( ){ }
n

n xF x
θ
 =  
 

, and this is also 

P(longest offcut is ≤ x), i.e. the c.d.f. of the sample maximum ( )nX .  Thus the p.d.f. of 

( )nX  is the derivative of this, i.e. nxn–1/θ n.  This is for the interval (0, θ ). 
 

( )( )
1

0
01 1

n n

n n n
nx n x nE X dx

n n

θ
θ θ

θ θ

+ 
∴ = = = + + 

∫ . 

 

( )( )
1 2 2

2

0
02 2

n n

n n n
nx n x nE X dx

n n

θ
θ θ

θ θ

+ + 
= = = + + 
∫ . 

 

( )( ) ( )( ) ( )( ){ } ( )
2 2 22

2
2Var

2 1n n n
n nX E X E X
n n

θ θ∴ = − = −
+ +

 

 

( ) ( )
( )( ) ( ) ( )

2 2
2

2 2

1 2
2 1 1 2

n n n nn
n n n n

θθ
 + − +

= = 
 + + + + 

. 

 
 

Immediately we have ( )
1

n
nE X

n
θ+  = 

 
, so ( )

1
n

n X
n
+  is an unbiased estimator of θ. 

 

( ) ( )
( )( ) ( )

( ) ( ) ( )

2 2 2 2

22 2

1 11Var Var
21 2n

n nn nX n X
n n n n nn n

θ θ+ ++  = = =  +  + +
. 
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(iii) We have (see part (i)) that E(X) = θ /2.  Thus the method of moments estimator 

of θ /2 is X , and so the method of moments estimator of θ is 2X  or 2
iX

n∑  as 

required. 
 

( ) ( ) ( )
2 22 4 4Var Var 2 4Var Var .

12 3iX X X X
n n n n

θ θ  = = = = = 
 
∑ . 

 
 



 

 

Higher Certificate, Paper I, 2004.  Question 8 
 
 
(i) 
 
Trainee's time (y) 

 

0

10

20
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40
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60

0 10 20 30 40 50

        Benchmark time (x) 

 
Simple linear regression analysis seems quite suitable. 
 
 
(ii) The model is yi = α + β xi + ei, where {ei} are uncorrelated with zero mean and 
(constant) variance σ 2 (independent identically distributed N(0, σ 2) for the purpose of 
undertaking statistical tests, as in part (iii)).  Estimating by the method of least squares 
gives 

ˆ xy

xx

S
S

β = ,        ˆˆ y xα β= − , 
 

where (standard notation) 
 

( )( ) i i
xy i i i i

x y
S x x y y x y

n
= Σ − − = −∑ ∑∑  , 

 

( ) ( )2
2 2 i

xx i i

x
S x x x

n
= − = − ∑∑ ∑  . 

 
We have 
 

   ( )
( )2

4440 150 220 /10 1140ˆ 1.20
9503200 150 /10

xy

xx

S
S

β
− ×

= = = =
−

   and   ( )ˆ 22 1.20 15 4α = − × = , 

 

so the line is 
 

y = 4 + 1.2x. 
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The total sum of squares is ( ) ( )2
2 2 1440

10
i

yy i i

y
S y y y= − = − =∑∑ ∑ . 

 
The sum of squares for regression is ˆ

xySβ  (or 2 /xy xxS S ) = 1368. 
 
Therefore the residual sum of squares is 1440 – 1368 = 72. 
 
This has 8 degrees of freedom, so the residual mean square ( 2σ̂ ) is 72/8 = 9. 
 
The coefficient of determination R2 = 1368/1440 = 0.95 (usually given as 95%). 
 
 
(iii) The estimated variance of β̂  is 9/950 = 0.009474.  So the test statistic for 

testing the null hypothesis β = 1 is 1.2 1
0.009474

−  = 2.05, which we refer to t8. 

 
This is not significant at the 5% level, so the null hypothesis β = 1 cannot be rejected. 
 
 
(iv) The model here is yi = bxi + ei. 

Estimating b by least squares, we minimise ( )2

1

n

i i
i

y bx
=

Ω = −∑ . 

Differentiating with respect to b, we have ( )2 i i i
d y bx x
db
Ω = − −∑ . 

 

Setting this equal to zero gives 2ˆ
i i ix y b xΣ = Σ , i.e. 2ˆ /i i ib x y x= Σ Σ . 

 

(Note that 
2

2
2 2 0i

d x
db

Ω = >∑ , so this is a minimum.) 

 
Thus we have b̂  = 4440/3200 = 1.3875. 
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