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HONG KONG STATISTICAL SOCIETY

2016 EXAMINATIONS — SOLUTIONS

GRADUATE DIPLOMA - MODULE 1
The Society is providing these solutions to assist candidates preparing for the
examinations in 2017.

The solutions are intended as learning aids and should not be seen as "model
answers".

Users of the solutions should always be aware that in many cases there are valid
alternative methods. Also, in the many cases where discussion is called for, there
may be other valid points that could be made.

While every care has been taken with the preparation of these solutions, the Society
will not be responsible for any errors or omissions.

The Society will not enter into any correspondence in respect of these solutions.



Question 1

(i)

(i)

u 1 2 k [distribution might be implicit]
w L 1 1
P k k k

So  E(U)= %(1 +...+K) :%.%k(k +1) [1 mark] = ¥(k + 1) [1 mark]

(k+1)(2k +1)

E(uZ): 3(12++k2) :lk(k+1)(2k+1) _ l
k k

6 6
1 1 , 1,
Var(U) ==(k+1)(2k +1)— =(k +1) = —(k° -1
©) = 2k +1)(2k+2)— (k41 = (k" 1)
(@) The range space of Sis {2, 3, ...}. For any s in this range,

s—1
P(S=s)=Y P(X=xandY =s—-Xx)
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P(X =x).P(Y =s—X) [independe nce]
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(b) Suppose that S ='s, for some s greater than or equal to 2. Then X must
take values in the range 1, 2, ..., s—1. For any x in this range,

P(X =xandY =s-X)
P(S=5)
_@-0)toa-0)y""e

T (s-D)O*(-0)*2

P(X =x|S=5)=

1
s-1
So, conditional on S =s, X has the distribution of (i) with k =s — 1.

_ s(s—2)

E(X|S=s)= >

S 1 9
> Var(s) =E((s—1) ~1)

1,1

1,1

1,11




Question 2

(i)

(i)

nun 1e &

( 1 ——du
j u"e *du

EU) = j

G —1)'
o
T (n-1)1em
__o
(n-1re™!

j t"e'dt [where t= au]

Similarly, E(U?) = % [Give marks also if full working shown.]

nn+l) n*> n

So, Var(U) = 7 E g

@ f(x)s= jj4xe‘(”y’ dy = 4xe‘xj‘je‘y dy =4xe®, x>0

Using part (i), withn=2 and 8 = 2, E(X) = 1, Var(X) = %.

4xe )
xe 2

) fyIx=-,

=e UM y>x

E(Y|X = x):j:’yeﬂ**) dy

=£%t+ne*dt [t=y—x]
:jwte’t dt+xroe’t dt

0 0
=11+ x(0!)

=1+X

(c) Using the Law of Iterated Expectation,

E(Y)=E{E(Y | X)}
=E(1+X)
=1+ E(X)
=2

1,11

1,1

1,1




Question 3

(i)

(i)

(iii)

F(z)= Lzaét"‘lexp(— atg)dt
=Lazge‘”du [u=a’]
=1—exp(—az’)

. h(z) = f(z) _a@” exp(-az’) _

_ _ oG’
1-F(2) exp(—az’)

(@) h(z) constant for z> 0 if =1, (b) h(z) decreases with z >0 if (0<) < 1
[Don 't need to state 8> 0 to get the second of these marks.]

G(y) = P(either component fails in time y)
=P(Xi<yorXz<y)
=P(X1<y) +P(X2<y)-P(X1<yand X2<y)
=P(X1<y) + P(X2<y) - P(X1<y).P(X2<y) [independence]

= Fa(y) + Fa(y) — Fa(y).Fa(y)
[Give full marks to candidate who realises the survivor function of Y must
be the product of the survivor functions of X1 and Xz.]

g(y) = G'(y) =fuly) + f2(y) — fa(y)-Fa(y) — Fa(y)-f2(y)

_ 9y _ EWE-FW]+ LE-RW)]
1-G(y) L-FW-Fm]

h,(y) +h,(y)

In the Weibull case,
h(y) =h(y) +h,(y) =" + "™ = (o + a, oy
This is the hazard function of another Weibull distribution.
G(y) =P(Cy and C; fail in time y) = F1(y).F2(y)  [independence]
When the two components are identical,
G(y) = [FWI?
and  g(y) = 2.F(y)-f(y)

0 hiy FOIO) _, FO _fy) _ )

C1-[F(F T1+F) 1-F(y)  1-F(y)

since Msi because 0< F(y)<1.
1+F(y) 2
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Question 4

(@)

(b)

(i)  Cov(X1, X2) = p\[Var(X1).Var(X2)] = —20

So E(X)=(50 45) and Cov(ﬁ):[64 _ZOJ

-20 100

(if) The random vector Y has a bivariate normal distribution, with

0.555 0 50 -17.76 9.99
E(Y)= + =
0 0.447 )\ 45 0 20.12
0.555 0 64 —20)(0.555 0
Cov(Y) =
0 0.447 )\ =20 100 0 0.447

(1971 -4.96

| -4.96 19.98
[Candidates who use 20.115 instead of 20.12 in these calculations should
be awarded full marks.]

(iii) The correlation between Y1 and Y2 is -0.25, the same as the correlation
between Xi and X.. This illustrates the general point that re-scaling

random variables (for example, by changing the units of measurement)
changes their covariance but not their correlation.

(i)  pe=ps=p p=p

(i1) Y is normally distributed with

E(Y):%(,u+y+a+y+2a):,u+a

1 p p°)(1/3
Var(Y)=(1/3 1/3 1/3)*| p 1 p||1/3
p> p 1 /1/3

2

:%(3+4p+2p2)

(iii) X has a multivariate normal distribution with

2 2 2 2

B u L o o°p op
E()_(): uta |, COV()_():E o’p o° ap
U+ 2a o’p® o°p o’
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Question 5

(i)

(i)

(iii)

In this case, f(x) =1 (0 <x<1)and F(x) =x (0 <x < 1).
Settingn=3,i=2and j = 3 gives

_ 3' 1 0 0 _
g(w,v)_m[w] v-w]’[L-v]°11=6w, O<w<v<1
kyym)_ 1 k+ 1 m
Efw'v )_GJ'OW 1_|'Wv dvdw
6
m+1
6 Wk+2 Wk+m+3 1
:m+1{k+2_k+m+3l
B 6
~(k+2)(k+m+3)

J.Olwk +1 (1 _ Wm+l)dW

E(W) = 6/(3 x 4) = 0.5

E(W2) = 6/(4 x 5) = 0.3 = Var(W) = 0.3 — (0.5)2 = 0.05
E(V) = 6/(2 x 4) = 0.75

E(V2) = 6/(2 X 5) = 0.6 = Var(V) = 0.6 — (0.75)? = 0.0375
E(WV) = 6/(3x 5) = 0.4

— Cov(W, V) = 0.4 — (0.5) x (0.75) = 0.025

PO ON
33333

x~ X X X X
(LI | I I

PR OQO

The median is W + #— %2 and the maximum is V + 68— .
So the difference between the two estimates is V — W (or W - V).

E(V — W) = E(V) — E(W) = 0.75 - 0.5 = 0.25 (or E(W — V)= —0.25)

Var(V - W) = Var(V) + Var(W) — 2 x Cov(W, V)
=0.0375 + 0.05 - 0.05 = 0.0375
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Question 6

(i)

(i)

(iii)

x=0

Z(T](&t)xa__ H)m—x

0

M (0 = E(eX)= e (Tj@*(l—e)m-x

=(1-0+6")" [Binomial Theorem]

M/ (1) =ml-0+6")" " &'
= E(X)=M,(0)=md
M () =[m(L— 6+ ") J6e' +[m(m—1)(L— 0 + 66")" 2] &'
= E(X?) =M% (0)=mé+m(m-1)6°
Var(X)=mé+m(m-16>—m’6’> =mé(1-0)

Each Xi has moment-generating function M, (t)=(1-6+&").
Let S=X;+ ...+ Xn Since Xy, ..., Xn are independent [1 mark], then
Ms(t): Ml(t)"'Mn(t):(l_e""%t)n

This is the moment-generating function of the Bi(n, &) distribution. Using the
Uniqueness Property of moment-generating functions, [1 mark] S ~ Bi(n, 6).

The Central Limit Theorem: Suppose that Xi, ..., Xn is a sequence of
independent and identically-distributed random variables, each with (finite)
expected value x and (finite) variance o. For sufficiently large values of n,

iXi —-nu
i=1
\no’®

[Give mark for correct statement in terms of X ]

~N(0,1) approximat ely

In the context of part (ii), z = 8 and o> = §(1 — ) using the results proved in
(i). So approximately, for large enough n,

S—né

Jnél-0)

or S ~N(n@,né(L—-6)) approximately.

~ N(0,1) approximately

It was proved in (ii) that S ~ Bi(n, 0). Therefore, the Bi(n, 6) distribution can
be approximated by the N(nH, nH(l-H)) distribution for large enough n.
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Question 7

()

(b)

(i) The Tables provided give the following cumulative probabilities [also
give this mark if candidate works out point probabilities and uses them to
calculate the correct cumulative probabilities]:

X 0 1 2 3 4 5
Fx(x) 0.0821 0.2873 0.5438 0.7576 0.8912 0.9580 ...

u; =0.0885,s0x1=1 u2 = 0.4096, so X2 = 2
us =0.7370, so x3 =3 Us =0.9384,s0x4 =5

The pseudo-random variates are 1, 2, 3 and 5.

() FOO=['10e I =[e 9] c1emed 53

So u:F(x)c>u:1—e‘1°(X‘3)c>x:3—%loge(1—u)

ur = 0.0885, so x1 = 3.009 u2 = 0.4096, so x2 = 3.053
us =0.7370, so x3 = 3.134 Us = 0.9384, so x4 = 3.279

The pseudo-random variates are 3.009, 3.053, 3.134, 3.279.

For full table of results, see next page. [Give 1 mark for mapping six
different digits to the possible outcomes on the die, 1 mark for discarding
all occurrences of the other four digits, 1 mark for not starting till the first
“6”, 1 mark for applying the other conditions. If a candidate carrying out
the correct general procedure makes minor errors, deduct 1 mark.]

This simulation required 58 random digits, giving 33 valid rolls of a die.

Repeat the simulation many times (possibly 1000 or 10000). Count the
number of rolls of the die required each time. Obtain an appropriate
interval based on the distribution of the number of rolls required (for
example, mean +/- 1.96s.d., or 2.5" to 97.5" percentile of the sample
distribution).

PP
=
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Question 7

# Digit _Outcome # Digit Outcome
1 5 - 31 0 Not Roll
2 2 - 32 0 Not Roll
3 1 - 33 6 -

4 0 Not Roll 34 2 Antenna 1
5 9 Not Roll 35 6 -

6 0 Not Roll 36 6 -

7 0 Not Roll 37 2 Antenna 2
8 9 Not Roll 38 0 Not Roll
9 6 Body 39 6 -

10 8 Not Roll 40 8 Not Roll
11 6 - 41 7 Not Roll
12 8 Not Roll 42 0 Not Roll
13 0 Not Roll 43 5 -

14 8 Not Roll 44 4 -

15 9 Not Roll 45 9 Not Roll
16 8 Not Roll 46 9 Not Roll
17 6 - 47 6 -

18 3 Legl 48 7 Not Roll
19 6 - 49 5 -

20 4 Tail 50 6 -

21 2 - 51 5 -

22 8 Not Roll 52 3 Leg 3
23 8 Not Roll 53 9 Not Roll
24 4 - 54 4 -

25 5 Head 55 4 -

26 4 - 56 3 Leg 4
27 1 Eye 1l 57 5 -

28 9 Not Roll 58 1 Eye 2
29 3 Leg 2

30 9 Not Roll




Question 8

(i)

(i)

(iii)

U=1-X,V=—1"
1- X

means X =1-U,Y =UV

X X

U v Lo
1=|& NI -
a aTv o
EYRYY

Hence, on the range space {(u,v): 0<u<1;0<v<1},

g(u,v) =u f(l—u,uv)
_y Lla+B+y)
C(@)T(P)T(v)

_ F((X + B + Y) uB+y71(1_ u)(xflvﬁfl(l_ V)771
() T(E)I(y)

L-uw)**(uv) (u—-uv)"!

The joint p.d.f. factorises as the product of a function of u alone and a
function of v alone. Their joint range space is a Cartesian product (or
‘rectangular space’). Using the Factorisation Theorem, therefore, U and V
are independent. The marginal p.d.f.’s are

g(u)ec v’ @-u)**, 0<u<1
[(a+B+y) uB+y—1(1
FB+v)I(a)

ie. U-~Be(f+y 0

[Give full marks to a candidate who carries out these last two steps in the

reverse order.]

S0 g(u)= —u)**, 0<u <y,

and  g(v)ocv/r(A-v) T 0<v<l

_TB+y) s g\l
) g(v)_—F(B)F(y)V 1-v)"t0<v<l

ie.  V~Be(S )
[Give full marks to a candidate who carries out these last two steps in the
reverse order.]

X=1-U,s0X~Be(a, f+7)

Y ~Be(f, a+ y) and Z ~ Be(y, a+ f), by symmetry
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