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MODULE 3  :  Stochastic processes and time series 
 

Time allowed:  Three hours 
 
 
 

Candidates should answer FIVE questions. 
 

All questions carry equal marks. 
The number of marks allotted for each part-question is shown in brackets. 

 
 
 

Graph paper and Official tables are provided. 
 
 
 

Candidates may use calculators in accordance with the regulations published in 
the Society's "Guide to Examinations" (document Ex1). 

 
 
 

The notation log denotes logarithm to base e. 
Logarithms to any other base are explicitly identified, e.g. log10. 

 

Note also that  n
r

 is the same as n
rC . 
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1. In a Markov chain model for the progression of a disease, Xn denotes the level of 
severity in year n, for n = 0, 1, 2, … .  The state space is {1, 2, 3, 4} with the following 
interpretations: in state 1 the symptoms are under control, states 2 and 3 represent 
respectively moderate and severe symptoms while state 4 represents a permanent 
disability. 

The transition matrix is 

1 1 1
2 4 4

1 1 1
2 4 4

1 1
2 2

0

0

0 0

0 0 0 1

 
 
   
  
 

P . 

 
(i) Classify the four states as transient or recurrent giving reasons.  What does this 

tell you about the long-run fate of someone with this disease? 
(3) 

 
(ii) Calculate the 2-step transition matrix. 

(3) 
(iii) State the probability that 

 
(a) a patient whose symptoms are moderate will be permanently disabled 

one year later, (1) 
 

(b) a patient whose symptoms are under control will have severe symptoms 
two years later. (1) 

 
(iv) Calculate the probability that a patient whose symptoms are moderate will have 

severe symptoms four years later. 
(2) 

 
A new treatment becomes available but only to permanently disabled patients, all of 
whom receive the treatment.  This has a 50% success rate in which case a patient 
returns to the "symptoms under control" state and is subject to the same transition 
probabilities as before.  A patient whose treatment is unsuccessful remains in state 4 
receiving a further round of treatment the following year. 

 
(v) Write out the transition matrix for this new Markov chain and classify the 

states as transient or recurrent. 
(2) 

 
(vi) Calculate the stationary distribution of the new chain.  The population suffering 

from the disease currently has no members receiving the new treatment.  What 
proportion of the population will be receiving the new treatment after a long 
passage of time? 

(6) 
 

(vii) The annual cost of health care for each patient is zero in state 1, £c in state 2, 
£2c in state 3 and £8c in state 4, where c > 0 is a constant.  Calculate the 
expected annual cost per patient when the system is in steady state. 

(2) 
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2. Let nX  for n = 0, 1, 2, … denote the population size in the nth generation of a 

branching process whose initial population size is 1, i.e. 0 1X  .  Each individual in a 

generation produces a number of offspring, Z, forming the next generation, where 
( )ip P Z i  , for i = 0, 1, 2, …, with associated probability generating function (pgf) 

( )G s .  The numbers of offspring produced by different individuals are statistically 
independent of each other. 
 

Let ( )nG z  denote the pgf of the total number of individuals in the population in the 

nth generation for n = 0, 1, 2, … . 
 

(i) Explain why 1 ( )G s , the pgf of 1X , is ( )G s . 

(1) 
 

(ii) Let niX  denote the number of individuals in the nth generation who are 

descended from the ith member of the first generation.  Explain why the pgf of 

niX  is 1 ( )nG s . 

(2) 
 

(iii) If there are 1X x  individuals in the first generation, prove that 

   1 1| ( )n
xX

nE s X x G s   

and hence that 

 1( ) ( )n nG s G G s . 

(7) 
 

(iv) Let ( 0)n nP X   , for n = 1, 2, 3, …, be the probability that the population 

has become extinct by the nth generation.  Show that n  is increasing with n.  

Use the equation for ( )nG s  in part (iii) to show that 1( )n nG   . 

(3) 
 

(v) Let lim nn
 


  be the probability of ultimate extinction of the population.  

Deduce that  satisfies the equation ( )G  .  Explain how you know that 
1   is a root of this equation. 

(2) 
 

(vi) Suppose now that Z has the following distribution. 
 

Number of offspring, i 0 1 2 3 

Probability, ip  0.1 0.2 0.3 0.4 
 

Calculate the probability of ultimate extinction of the population. 
(5) 

[You may assume that  is given by the smallest non-negative root of the 
equation ( )G  .] 
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3. (i) For a general Markovian queuing system, the equilibrium probability n  that 

there are n customers in the system is related to 0  (the probability that there 

are no customers in the system) by the formula 

1 2 0
0

1 1

...

...
n n

n
n n

   
  
 



 , for n = 1, 2, 3, … . 

Write down the definitions of the i  and i  as instantaneous transition rates 

and describe how 0  may be calculated. 

(3) 
 

(ii) A take-away food counter has one server.  Customers arrive randomly at a rate 
of  per hour.  If there is a queue, some customers go elsewhere so that the 

probability of a potential customer staying for service is 
1

1n 
 when there are n 

customers in the shop already waiting or being served. 
 
Service times are independent but the server is new to the job and tends to 

make mistakes under pressure, so the rate of service drops to 
1n




 per hour 

when there are n customers present, where   . 
 
(a) Show that the server will be busy for a proportion (2 )   of the time 

where 



 . 

(6) 

[You may use the result that 
 

1
2

1

1
, for 1

1
j

j

jx x
x





 


 .] 

 
(b) Write down an expression for n  (n = 0, 1, 2, …), the equilibrium 

probability that there are n customers in the system.  Show that the 
probability generating function of the number of customers in the 
system in the steady state is 

2

2

(1 )
( )

(1 )
P z

z








 

and hence find the mean and variance of the number of customers in the 
system in the steady state. 

(8) 
 

(c) Show that on average  customers per hour go elsewhere. 
(3) 
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4. In a model for the creation of particles at a time-varying rate, let ( )N t  denote the 
number of particles created in [0, ]t .  The probability of a particle being created in the 
time interval ( , ]t t t  is ( ) ( )t t o t   , regardless of the number of particles 
previously created and their creation times.  The probability of more than one particle 
being created in ( , ]t t t  is ( )o t . 
 
(i) Write down an expression for the probability that no particles are created in 

( , ]t t t .  Show that, for 1n  , the probability ( )np t of n particles being 

created in [0, ]t  satisfies the differential equation 

1

( )
( ) ( ) ( ) ( )n

n n

dp t
t p t t p t

dt
     . 

Derive the differential equation for 0 ( )p t . 

(6) 
 

(ii) The corresponding probability generating function is defined as 

0

( , ) ( ) n
n

n

G s t p t s




 . 

Using the results in part (i), show that ( , )G s t satisfies the partial differential 
equation 

( )( 1) ( , )
G

t s G s t
t


 


, 

with boundary condition ( , 0) 1G s  . 
(5) 

 
(iii) Show that 

( )( 1)( , ) t sG s t e   ,  

where 
0

( ) = ( )
t

t u du  . 

(4) 
 

(iv) Deduce the probability mass function ( )np t  of ( )N t  and identify its 

distribution. 
(5) 
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5. (a) A forecaster uses simple exponential smoothing to obtain forecasts of a time 
series whose observed values are 1 2, , , ,ty y y   . 
 

(i) Let tL  denote the smoothed value (the level) of the series at time t and 

let  be the smoothing constant.  Write down 
 

(A) the updating equation for tL  in terms of 1tL  , ty  and , 
 

(B) ˆ ( )ty h , the corresponding forecast at time t for lead time h, for 

1.h   
(2) 

 

(ii) Denoting by te  the one-step-ahead forecast error, 1ˆ (1)t t te y y   , for 

2t  , rewrite the updating equation for tL  in terms of 1tL  , te  and  
(2) 

 

(iii) Assume that the value of 1L  is taken to be equal to 1y .  By applying the 

updating equation iteratively, find an explicit expression for tL  in terms 

of 1 2, , , ty y y  and , in as simple terms as you can 
(4) 

 
(iv) The forecaster wishes to predict the weekly sales of a local newspaper 

in thousands of copies.  The sales for the first four months, i.e. t = 1, 2, 
3 and 4, are 13, 15, 12 and 17 respectively.  Using the initial value 1y  

of the series as the initial smoothed value 1L , and taking the smoothing 

constant to be 0.3, calculate (to 2 decimal places) the smoothed value 
and forecast error for each of t = 2, 3, 4. 

(4) 
 

(b) The following model defines tX  in terms of tW  and two independent white 

noise series tE   and tA , having respective variances 2
E  and 2

A . 

1t t t

t t t

W W E

X W A
 

 
 

 

(i) Express the first difference, 1t t tY X X   , in terms of white noise 

terms only.  Deduce that tY  has autocorrelation function 

2

2 2
, for 1,

( ) 2

0, for 2.

A

Y E A

k
k

k


  

  
 

 

(6) 
 

(ii) If the forecaster were to model tX  as a member of the ARIMA(p, d, q) 

family, what would be the values of p, d and q? 
(2)
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6. A time series tX  satisfies the model 

1 210 0.4 0.45t t t tX A A A     , 

where tA  is white noise with variance 2 . 

 
(i) This model can be described as a member of the ARMA(p, q) family.  State the 

values of p and q and verify that tX  is 
 

(a) stationary, 
 

(b) invertible. 
(5) 

 
(ii) Calculate the mean and variance of tX . 

(4) 
 

(iii) If ˆ ( )tX h  denotes the minimum mean square error forecast of t hX    at time t, 

explain why ˆ ( ) 10tX h  , for 3h  , and express both ˆ (1)tX  and ˆ (2)tX  in 

terms of forecast errors ta   and 1ta  .  Explain how ta  and 1ta   would be 

calculated. 
(6) 

 
(iv) Calculate the h-step-ahead forecast error variance for each of 1, 2h   and 

3.h    Find also a 90% prediction interval for t hX   for 3h   and show that it 

has constant width. 
(5) 
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7. (i) A linear model for a time series tX  can be described using the model 

( )  ( )t tB X B A   

where ( )B  and ( )B  are characteristic polynomials in the backshift, or lag, 

operator B, and where tA  is white noise.  Explain how you would decide 

whether tX  is 

(a) stationary, 

(b) invertible. 
(2) 

 

(ii) The time series tX  satisfies 

1 2 11.8 – 0.8 0.6t t t t tX X X A A     . 

Investigate 

(a) stationarity, 

(b) invertibility, 

of tX .  Classify tX  as a member of the ARIMA(p, d, q) family, i.e. identify p, 

d, and q. 
(5) 

 
(iii) The estimation method known as 'conditional least squares' requires the 

calculation of the errors ta  for t = 1, 2, …, n from the time series data tx  as a 

function of unknown parameters 1 , ..., p   and 1 , ..., q  .  Illustrate this using 

the model given in part (ii), by writing out the difference equation for 
calculating ta  with its initial values.  Explain briefly how these are used in the 

subsequent calculations to find the conditional least squares estimates.  Why is 
this method known as conditional least squares? 

(5) 
 

(iv) A linear time series model whose characteristic polynomials have a common 
root is said to be redundant since it is equivalent to a simpler model.  Show that 
the model 

1 2 3 1 22.8 2.6 0.8 0.4 0.6t t t t t t tZ Z Z Z A A A           

is redundant, simplify it and correctly classify it as a member of the 
ARIMA(p, d, q) family. 

(4) 
 

(v) Generalise this to a general ARIMA(p, d, q) model with a common root ω.  In 
what way, if at all, will 

(a) the errors, 

(b) the conditional sum of squares, 

depend on ω?  Justify your answer.  What problem would trying to fit a 
redundant model, such as that in part (iv), pose at the model fitting stage? 

(4) 
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8. A scientist studying plant nutrition is considering a time series tx  consisting of 187 

successive observations of daily nitrogen intake in a variety of wheat.  Figure 1 on the 
next page shows a plot of this series.  Figures 2 and 3 on the next page are plots of 
the sample autocorrelation function (acf) and partial autocorrelation function (pacf) for 
the series. 
 
(i) In Figures 2 and 3, acf or pacf values outside the horizontal lines are 

significantly different from zero (at the 5% level).  Comment on the following 
ARIMA models as candidates for tx . 
 

(a) White noise 
 

(b) MA(2) 
 

(c) AR(2) 
(6) 

 
(ii) The edited computer output on the second page following shows some results 

obtained by fitting three ARIMA models to the nitrogen intake data.  The 
software used fits an ARIMA(p, d, q) model to tx  by first calculating ty  by 

taking dth differences of tx , and then fitting the model in the form 

0
1 1

p q

t i t i t i t i
i i

y y A A   
 

     , 

where tA  is white noise.  State which models have been fitted and write down 

explicitly their model equations. 
(4) 

 
(iii) Treating each of the three models in turn, consider briefly whether their 

parameter estimates are statistically significant.  What do you conclude about 
the suitability of these models? 

(5) 
 

(iv) What do you learn from the values of 
 

(a) the log likelihood, 
 

(b) the AIC, 
 

about the suitability of each of the models? 
(2) 

 
(v) A colleague of the scientist claims that Figure 1 shows signs of non-stationarity 

and proposes taking first differences.  A quick calculation shows that the 
standard deviation of tx  is 1.29 while 1t t ty x x    has standard deviation 

1.53.  Discuss the colleague's proposal in the light of these standard deviations, 
Figure 2 and the model fitting results. 

(3) 
 
  Diagrams and computer output are on the next two pages
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 
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Model 1 
 
Model: 
arima(x = nitrogen intake, order = 2, 0, 0) 
 
Coefficients: 
            ar1       ar2    intercept 
          0.1168    0.6282    9.9283 
  s.e.    0.0565    0.0567    0.2667 
 
sigma^2 estimated as 0.9148:   log likelihood = -257.57,   AIC = 523.15 
 
 
 
Model 2 
 
Model: 
arima(x = nitrogen intake, order = 3, 0, 0) 
 
Coefficients: 
            ar1       ar2       ar3    intercept 
          0.1145    0.6278    0.0037    9.9284 
  s.e.    0.0727    0.0572    0.0739    0.2678 
 
sigma^2 estimated as 0.9148:   log likelihood = -257.57,   AIC = 525.14 
 
 
 
Model 3 
 
Model: 
arima(x = nitrogen intake, order = 2, 0, 1) 
 
Coefficients: 
            ar1       ar2       ma1    intercept 
          0.1201    0.6272   -0.0055    9.9285 
  s.e.    0.0902    0.0605    0.1149    0.2678 
 
sigma^2 estimated as 0.9148:   log likelihood = -257.57,   AIC = 525.14 
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