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(i) The likelihood L of the sample is 
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confirming that this is a maximum. 
 
Hence, by the invariance property of maximum likelihood estimators, 
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Hence the cdf of this is 1 – e–θ

 
w and the pdf is θ e–θ

 
w, so the distribution is exponential 

with mean 1/θ = γ. 
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the C-R lower bound is γ 2/n.  From (ii), ( ) 2ˆVar /nγ γ= , so the bound is attained. 
 
 
(iv) No.  Because the bound is attainable for γ, it cannot be attainable for a non-
linear function of γ, such as θ = 1/γ. 
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(i) Given a random sample of data X from a distribution having parameter θ, a 
statistic T(X) is sufficient for θ  if the conditional distribution of X given T(X) does 
not involve θ. 
 
 
(ii) Let Y = min(Xi).  Defining the indicator function Iθ (xi) to be 0 when xi < θ  and 

to be 1 when xi ≥ θ, the likelihood function is ( ) ( )
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Hence the cdf is ( ) ( )1 n yF y e θ −= −  and the pdf is f(y) = dF(y)/dy = ( )n yne θ − , for y > θ. 
 
 

(iv) We have that Y has a shifted exponential distribution.  Hence ( ) 1E Y
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minimised when c = 1/n.  Thus Y – (1/n) has smallest variance of all estimators of the 
form Y – c. 
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(i) The likelihood for a sample (x1, x2,, …, xn) is ( ) ( )Const. 1 ii
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and so the likelihood ratio is  
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.  Using the 

Neyman-Pearson lemma, we reject H0 when λ > c, where c is chosen to give the 
required level of test, α.  Now, λ is an increasing function of Σxi, hence of θ̂ , and an 
equivalent rule is therefore to reject H0 when ˆ kθ < , where k is chosen to give test 
level α. 
 
 
(ii) ˆnθ  is binomial with parameters (n, θ ).  Hence the large-sample distribution of 
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Using this expression for k together with the expression in (iii) means that we require 
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Thus we get  √n = 12 × 1.6449 × 0.9044 = 17.8521  and  n = 318.7, so we take n = 
319. 
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(i) P(0) = θ P(1) = θ (1 – θ ) P(≥ 2) = 1 – θ  – θ (1 – θ ) = (1 – θ )2. 
 
Thus the likelihood of n0 zeros, n1 ones and n2 with two or more flaws is 
 

( ){ } { } ( ) ( )1 0 1 0 10 0 12 2 21 1 1
n n n n n n nn n nL θ θ θ θ θ θ− − − −+= − − = − . 

 
 
(ii) ( ) ( ) ( ) ( )0 1 0 1log log 2 2 log 1L n n n n nθ θ θ= + + − − − . 
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(iii) An approximate 90% confidence interval for θ  is 
( )

1.6449ˆ
sample information

θ ± . 

 

In the case when n = 100, n0 = 90 and n1 = 7, we have 2n – n0 = 110, n0 + n1 = 97 and 
2n – 2n0 – n1 = 13. 
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Thus the confidence interval is 
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± ,   i.e. 0.882 0.051±    or   (0.831, 0.933). 
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(i) α = 0.025,    β = 0.075. 
 

For observations x1, x2, …, xn the likelihood is ( )
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The sequential probability ratio test rule is to continue sampling while A < λn < B, 
accept H0 if λn ≥ B and reject H0 (i.e. accept H1) if λn ≤ A.  A and B are given by 
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(iii) x1 = 2.2.     ( )31

1 4 4exp 4.84 9.428λ = × = ,  continue sampling. 
 
 x2 = 2.5.     ( )2 231

2 16 4exp (2.2 2.5 ) 255.93λ = × + = ,  accept H0. 
 
 No need to consider x3. 
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(i) A prior distribution is conjugate for a particular model (e.g. Normal, beta) if 
the prior and posterior distributions are from the same family. 
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The posterior distribution is proportional to ( ) ( )g Lθ θx , i.e. it is 

( ) ( )11 / 2

1

1constant exp 2
2

n
n

i i
i

x xαθ θ β −− +

=

  × − + − +    
∑ , 

 

which is gamma with parameters ( / 2)nα +  and ( )11 2
2 i ix xβ −+ − +∑ .  Hence the 

gamma prior is conjugate. 
 
 
(iii) The mean, 20, is α /β.  The variance, also 20, is α /β 2.  So β must be 1, and 
α must be 20, and these must be the values used in the prior distribution. 
 
 

(iv) θ x  is gamma 80 5.020 , 1
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The mean of this is 60/3.5 and the variance is 60/(3.5)2.  These are used in a Normal 
approximation, which is satisfactory for n = 80.  Hence an approximate 90% highest 
posterior density interval for θ is given by 
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i.e. 17.143 ± 3.640  or (13.50, 20.78). 
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(i) The likelihood ( )L θx  is ( ). 1 ii
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(iii) A Bayes estimator with constant risk for all θ  is minimax. 
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Topics to be included in a comprehensive answer include the following, and suitable 
examples should be given. 
 
Parametric tests are based on assumptions about the values of the parameters in mass 
or density functions for a family of distributions, for example N(µ, σ 2) or B(n, p), and 
confidence interval methods use the same theory. 
 
Parametric methods often use a likelihood function based on an assumed model, for 
example in a likelihood ratio test to compare hypotheses about a parameter in (say) a 
gamma family. 
 
Moments of a distribution, especially mean and variance, are often used in parametric 
methods, whereas order statistics (median etc) are more useful for non-parametric 
inference. 
 
It is less easy to construct confidence-limit arguments in non-parametric inference. 
 
Non-parametric methods need fewer assumptions, for example not requiring a 
specific distribution as a model. 
 
Prior information for parametric methods includes a model and some values for its 
parameters, whereas merely the value of an order statistic is often sufficient in a non-
parametric test. 
 
Exact probability theory based on samples from Normal distributions can be used for 
parametric methods, whereas approximate methods are more common for non-
parametric methods. 
 
Computing of critical value tables for non-parametric tests is often very complex 
compared with that required for parametric tests, although some good Normal 
approximations exist for moderate-sized samples in some standard non-parametric 
tests. 
 
If both types of test are possible for a set of data (for example a two-sample test), the 
parametric one is more powerful (provided the underlying modelling assumptions are 
satisfied) but the non-parametric one may be more robust (in case the assumptions are 
not). 
 
Ranked (non-numerical) data need the non-parametric approach. 
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