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Statistical Theory and Methods I

1 (a) Let the events E1, E2, · · · in a sample space S be such that (i)E1
⋃

E2
⋃

E3 · · · = S;
(ii)P (Ei

⋂
Ej) = 0, i 6= j; (iii)P (Ei) > 0 ({Ei} are a set of mutually exclusive, exhaus-

tive events).
Let A be any event in S such that P (A) > 0. Then

P (Ej |A) =
P (A|Ej)P (Ej)∑
i P (A|Ei)P (Ei)

(b) Define the events E1 ≡Patient is resistant, E2 ≡Patient is not resistant, S ≡Patient is
successfully treated. With A, P (S|E1) = 0.92 and P (S|E2) = 0.87. With B, P (S|E1) =
0.75 and P (S|E2) = 0.95 Also P (E1) = θ, P (E2) = (1− θ).

P (E1|not S) =
P (not S|E1)P (E1)

P (not S|E1)P (ES1) + P (not S|E2)P (E2)

and for B this is = 0.25θ/{0.25θ + 0.05(1 − θ)} For A, P (S) = P (S|E1)P (E1) +
P (S|E2)P (E2) = 0.92θ + 0.87(1− θ) and for B, P (S) = 0.75θ + 0.95(1− θ)
0.75θ+0.95(1−θ) > 0.92θ+0.87(1−θ) ⇔ 0.08(1−θ) > 0.17θ ⇔ 0.08 > 0.25θ or 0.32 > θ

When θ = 0.25, P (S) = 0.75×0.25+0.95×0.75 = 1.20×0.75 = 0.90. for treatment B, Let
X = number of successfully treated patients out of 20, 40 that X is Binomial (20,0.90)

P (X ≥ 18) = 0.920 + 20× 0.919 × 0.1 +
20× 19

2
× 0.918 × 0.12

0.918(0.92 + 2× 0.9 + 190× 0.01) = 0.918 × 4.51 = 0.6769

2 (i) E[XrY s] =
1∫

x=0

1−x∫
y=0

XrY sXα−1Y β−1(1−X−Y )r−1 Γ(α+β+γ)
Γ(α)Γ(β)Γ(γ)dY dX evaluating over the

region.

The inner integral in Y is
1−x∫
0

Y s+β−1(1 − x − y)γ−1dY ; substitute u = Y
1−X to give

1∫
0

us+β−1(1 − x)s+β−1{1 − x − u(1 − x)}γ−1(1 − x)du = (1 − x)s+β+γ−1
1∫
0

us+β−1(1 −
u)γ−1du = (1− x)s+β+γ−1B(β + s, γ)
and the whole integral is

1∫

0

Xα+r−1(1−X)β+γ+s−1 · Γ(α + β + γ)B(β + s, γ)
Γ(α)Γ(β)Γ(γ)

dX
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=
B(α + r, β + γ + s)Γ(α + β + γ)B(β + s, γ)

Γ(α)Γ(β)Γ(γ)

So that
E[XrY s] =

Γ(α + r)Γ(β + γ + s)Γ(α + β + γ)Γ(β + s)Γ(γ)
Γ(α + β + γ + r + s)Γ(α)Γ(β)Γ(γ)Γ(β + γ + s)

=
Γ(α + r)Γ(β + s)Γ(α + β + γ)
Γ(α)Γ(β)Γ(α + β + γ + r + s)

(ii) For r = 1, s = 0 E[X] = αΓ(α)
Γ(α) · 1 · Γ(α+β+γ)

(α+β+γ)Γ(α+β+γ) = α
α+β+γ

For r = 2, s = 0 E[X2] = (α+1)αΓ(α)
Γ(α) · 1 · Γ(α+β+γ)

(α+β+γ+1)(α+β+γ)Γ(α+β+γ) = (α+1)α
(α+β+γ+1)(α+β+γ)

V [X] = E[X2]− (E[X])2 =
(α + 1)α

(α + β + γ + 1)(α + β + γ)
− α2

(α + β + γ)2

=
α

α + β + γ
{ α + 1
α + β + γ + 1

− α2

α + β + γ
}

=
α(β + γ)

(α + β + γ + 1)(α + β + γ)2

(iii)

P (X,Y ) =
cov(X, Y )√
V (X)V (Y )

and by symmetry E(Y )
β

α + β + γ
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For
r = s = 1, E(XY ) =

αβ

(α + β + γ + 1)(α + β + γ)
which gives

cov(X,Y ) =
αβ

(α + β + γ + 1)(α + β + γ)
− αβ

(α + β + γ)2

=
−αβ

(α + β + γ + 1)(α + β + γ)2

and

P (X, Y ) =
−αβ

(α + β + γ + 1)(α + β + γ)2
/

√
α(β + γ)β(α + γ)

(α + β + γ + 1)2(α + β + γ)4

=
−αβ√

αβ(α + γ)(β + γ)
or −

√
αβ

(α + γ)(β + γ)

3 (i)

x

(
M
x

)
=

xM !
x!(M − x)!

=
M(M − 1)!

(x− 1)!(M − x)!
= M

(
M − 1
x− 1

)

for any x = 1, 2, · · ·n.

E[X] =
n∑

x=0

x

(
M
x

) (
N −M
n− x

)

(
N
n

) =
n∑

x=1

M

(
M − 1
x− 1

) (
N −M
n− x

)

(
N
n

)

=
n∑

x=1

M

(
M − 1
x− 1

) (
(N − 1)− (M − 1)
(n− 1)− (x− 1)

)

N
n

(
N − 1
n− 1

)

=
nM

N

n−1∑

n=0

(
M − 1

u

) (
(N − 1)− (M − 1)

(n− 1)− u

)

(
N − 1
n− 1

) =
nM

N

Using the result given,

V [X] = E[X(X − 1)] + E[X]− {E[X]}2 =
n(n− 1)M(M − 1)

N(N − 1)
+

nM

N
− n2M2

N2
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=
nM

N2(N − 1)

(
N(n− 1)(M − 1) + N(N − 1)

−nM(N − 1)

)

=
nM(N −M)(N − n)

N2(N − 1)
= n · M

N
· (1− M

N
) · (N − n

N − 1
)

(ii)

P (X = x
⋂

Y = y) =

(
60
x

) (
20
y

) (
20

5− x− y

)
/

(
100
5

)

y = 0, 1, · · · 5 x = 0, 1, · · · 5− y

P (X = x|Y = y) = P (X = x
⋂

Y = y)/P (Y = y) and P (Y = y)

=

(
20
y

) (
80

5− y

)
/

(
100
5

)

therefore the conditional probability is
(

60
x

) (
20

(5− y)− x

)
/

(
80

5− y

)

Using results(a),with N = 80,M = 60, n = 5− y

E[X|Y = y] =
60
80

(5− y) =
3
4
(5− y), y = 0, 1, · · · 5

and
V [X|Y = y] =

3
16

(5− y)(
75 + y

79
), y = 0, 1, · · · 5

.

4 (i)

Mx(t) =
∞∑

x=1

ext(1− θ)x−1θ = θet
∞∑

x=1

{(1− θ)et}x−1 = θet/(1− (1− θ)et)

E[Xr] = M (r)
x (0), M1

x(t) =
θet(1− (1− θ)et) + θet(1− θ)et

{1− (1− θ)et}2
=

θet

{1− (1− θ)et}2

When t = 0, we find E[X] = 1/θ

M
′′
x (t) =

{1− (1− θ)et}2θet + θet · 2{1− (1− θ)et}{(1− θ)et}
{1− (1− θ)et}4

=
θet(1 + (1− θ)et)
{1− (1− θ)et}3

Whent = 0, E[X2] =
2− θ

θ2
, and V [X] =

2− θ

θ2
− 1

θ2
=

1− θ

θ2
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(ii) Let Xi be the number of trials after the (i−1)muntil the im, then Y = X1+X2+· · ·+Xn,
each having the geometric distribution of part(a); and by the independence property of
Bernouilli trials the {Xi} are independent.
Thus E[Y ] = n/θ and V [Y ] = n(1−θ)

θ2 ; and by the Central Limit Theorem, as

n →∞,
Y − n/θ√

n(1−θ)
θ2

→ N(0, 1)

(Y has a negative binomial distribution in general.)

(iii) The required number n=400 is as in(b) with θ = 0.8, Hence

P (Y ≥ 520) = P{0.8Y − 400√
400× 0.2

≥ 0.8× 520− 400√
400× 0.2

}

= P{0.8Y − 400√
80

≥ 16√
80
} = P (Z ≥ 1.7889)

Where Z is N(0,1): this is 1− φ(1.7889) = 1− 0.9632 = 0.0368
(Applying a continuity correction, to find P (Y ≥ 519.5) leads to P (Z > 1.744) = 0.0408)

5 (i) The joint pdf is that of X and Y, which is by independence

x
1
2
r−1e−

1
2
x

2
1
2
rΓ(1

2r)
· y

1
2
s−1e−

1
2
y

2
1
2
sΓ(1

2s)
for x > 0, y > 0.

U = X
r /Y

s and V = Y/s, so that Y = sV and X = rUV.The Jacobian
∣∣∣∣∣∣∣

∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

rV rU

0 s

∣∣∣∣∣∣∣
= rsV

The pdf of U,V is

f(U, V ) =
(rUV )

1
2
r−1(sV )

1
2
s−1e−

1
2
(rUV +sV )

2
1
2
(r+s)Γ(1

2r)Γ(1
2s)

· rsV

=
U (r−2)/2V

r+s
2
−1e−

(rU+s)V
2 r

1
2 s

1
2
s

2
1
2
(r+s)Γ(1

2r)Γ(1
2s)

(U > 0, V > 0)

(ii) Integrate out V:

fv(u) =
r

r
2 s

s
2 u

1
2
r−1

2
1
2
(r+s)Γ(1

2r)Γ(1
2s)

∞∫

0

v
r+s
2
−1e−

1
2
v(ru+s)dv

and by writing z = 1
2v(ru + s), the integral is

2
r+s
2 Γ( r+s

2 )

(ru + s)
1
2
(r+s)
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So that the marginal pdf is

Γ((r + s)/2)rr/2ss/2ur/2−1

Γ(r/2)Γ(s/2)(ru + s)
1
2
(r+s)

or
r

1
2
rs

1
2
su

1
2
r−1

B(1
2r, 1

2s)(ru + s)(r+s)/2
which is F (r, s)

(iii) The exponential distribution with mean (expected value)2 is χ2
(2). If X,Y are independent

exponentials with mean θ−1, then 2θx and 2θy are independent exponentials with mean
2, i.e. are χ2

(2) U becomes

2θx/2
2θy/2

∼ F(2,2) i.e.
X

Y
∼ F(2,2)

6 (i) For
⋃

(−θ, θ), f(x) = 1
2θ , (−θ < θ) and F (x) = x

2θ , (−θ < θ) Hence :

F (u1, un) = P (U1 ≤ u1 and Un ≤ un) = P (Un ≤ un)− P (U1 > u1 and Un ≤ un)

= P (all data ≤ un)− P (all data between u1 and un) = {F (un)}n − {F (un)− F (u1)}n

= (
un

2θ
)n − (

un − u1

2θ
)n (−θ < u1 < un < θ)

Therefore f(u1, un) =
∂2

∂u1∂un
F (u1, un) =

n(n− 1)(un − u1)n−2

(2θ)n

(ii) Change the variables to R = Un − U1, T = U1, i.e. U1 = T, Un = R + T

The Jacobian

∣∣∣∣∣∣∣

∂U1
∂R

∂U1
∂T

∂U2
∂R

∂U2
∂T

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

0 1

1 1

∣∣∣∣∣∣∣
(in modulus)

giving f(r, t) = n(n− 1)rn−2/(2θ)n (for − θ < t < θ; 0 < r < θ − t)
Integrating out T from −θ to θ − r we have

f(r) =
n(n− 1)

(2θ)n

∫ θ−r

−θ
rn−2dt =

n(n− 1)rn−2

(2θ)n
[t]θ−r
−θ =

n(n− 1)rn−2(2θ − r)
(2θ)n

(0 < r < 2θ)

(iii)

E[R] =
n(n− 1)

(2θ)n

∫ 2θ

0
rn−2(2θ − r)rdr =

n(n− 1)
(2θ)n

∫ 2θ

0
(2θrn−1 − rn)dr

=
n(n− 1)

(2θ)n
(
(2θ)n+1

n
− (2θ)n+1

n + 1
) =

2θ(n− 1)
n + 1

Thus E[12R] = θ(1− 2
n+1) and 1

2R is biased for θ, though asymptotically unbiased.

7
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(a)

Y = θXα, so X = (
Y

θ
)1/α and dX = (

1
α

)(
Y

θ
)

1
α
−1 dY

θ
.

Y is a monotonic function (strictly increasing)of X, and so f(Y )dY = f(X)dX, which
when written in terms of Y gives

αθ(
Y

θ
)

α−1
α exp(−Y )

1
αθ

(
Y

θ
)

1
α
−1dY, i.e. f(Y )dY = e−ydy. (y > 0)

This is the exponential distribution with mean 1.

(b) (i) (
10
3

)
=

10!
3!7!

= 120. P (X = 0) =
1

120
· 1 ·

(
5
3

)
=

1
12

= P (X = 3)

and P (X = 1) =
1

120
· 5 ·

(
5
2

)
=

5
12

= P (X = 2)

Hence : x = 0 1 2 3
P (x) 0.0833 0.4167 0.4167 0.0833
F (x) 0.0833 0.5000 0.9167 1.000

For random numbers (to 3 d.p.) 001-083, take x=0; 084−500 ⇒ x = 1; 501−917 ⇒
x = 2; 918− 000 ⇒ x = 3. Hence we obtain x=1, 1, 3, 2.

(ii) F (x) = 1 − e−x (x > 0), so use x = −ln(1 − a) where u are the given random
numbers.
We obtain 0.507, 0.089, 4.269, 0.772. The method used is the ”inverse c.d.f.”method.

(iii) From part (a), this is a Weibull with θ = 2 and α = 1/2, Hence Y = 2
√

x is
Exponential(1), i.e. X = (1

2Y )2. Taking the results of(ii), X = (1
2 × 0.507)2 =

0.0643, and the other values are 0.0020, 4.5560, 0.1490.

8 Transition matrix is

P =




1− (1− φ1)β (1− φ1)β 0 · · · 0 0
φ2 (1− φ2)(1− β) (1− φ2)β · · · 0 0
0 φ3 (1− φ3)(1− β) · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · (1− φN−1)(1− β) (1− φN−1)β
0 0 0 · · · φN 1− φN




For the stationary distribution Π = PΠ and so
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Π1 = (1− β + φ1β)Π1 + φ2Π2

Π2 = (1− φ1)βΠ1 + (1− φ2)(1− β)Π2 + φ3Π3
...
Πi = (1− φi−1)βΠi−1 + (1− φi)(1− β)Πi + φi+1Πi+1
...
ΠN = (1− φN−1)βΠN−1 + (1− φN )ΠN

The first equation gives Π2 = β(1− φ1)Π1/φ2

Then the second equation becomes

Π2 = φ2Π2 + (1− φ2)(1− β)Π2 + φ3Π3, or Π3 = β(1− φ2)Π2/φ3

and this result generalizes to the remaining equations so that

Πi+1 = β(1− φi)Πi/φi+1 for i = 0, 1, · · ·N − 1.

If
Πi <

β

1 + β
,

then
Πi

Πi−1
= β

(1− φi−1)
φi

≥ β(1− φi)
φi

since it is given that φi ≥ φi−1; so

Πi

Πi−1
≥ β

1/(1 + β)
β/(1 + β)

because Φi < β
1+β ,Thus Πi

Πi−1
≥ 1 Conversely, if

φi >
β

1 + β
,

then
Πi+1

Πi
= β

(1− φi)
φi+1

≤ β
(1− φi)

φi

since
φi ≤ φi+1;

and now
Πi+1

Πi
< 1

The mode of the stationary distribution is therefore found at(approximately)φ = β
1+β , or β =

φ
1−φ

Therefore choose β = 0−1
1−0.1 = 1/9.
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Statistical Theory and Methods II

1 (a) For a random sample of n observations drawn from a distribution with probability
density (or mass )function f(X, θ), the likelihood function of the observations X =

(X1, X2, · · · , Xn)T is the joint probability function L(θ) =
n∏

i=1
f(Xi, θ), considered as a

function of the parameter θ in the distribution.

(b) (i) When X ∼ U(0, θ), then E[X] = 1
2θ, and V [X] = 1

12θ2 Thus X = 1
n

n∑
i=1

Xi also has

expectation 1
2θ, and the first moment estimator gives X = 1

2θ, or θ̃1 = 2X

This is an unbiased estimator, with variance V ar[2X], which is 4V [X] = 4
n · θ2

12 = θ2

3n

(ii) L(θ) =
n∏

i=1

1
θ = 1

θn max(xi) ≤ θ since f(x) = 1
θ , (0 < x < θ)

The function decreases steadily as θ increases. It does not have a zero derivative
for any value of θ ≥ max(xi). The value at max(xi) is therefore the maximum
likelihood in the range max(xi) < θ < ∞ and this shows than max(xi) is the m.l.e.
θ̂2.

(iii)

Y = max(xi), P (Y ≤ y) = P ({x1, x2, · · · , xn} ≤ y) = ΠP (xi ≤ y)by independence,
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i.e. F (Y ) = (
y

θ
)n for 0 < y < θ

So

f(y) =
nyn−1

θn
for 0 < y < θ

E[y] =
∫ θ

0
yf(y)dy =

n

θn

∫ θ

0
yndy =

nθn+1

θn(n + 1)
=

nθ

n + 1

(iv) Clearly θ̃ = (n+1)Y
n is an unbiased estimator of θ

Its variance is (n+1
n )2V [Y ] Now

E[Y 2] =
n

θn

∫ θ

0
yn+1dy =

nθ2

n + 2

so that

V [Y ] =
nθ2

n + 2
− (nθ)2

(n + 1)2
=

θ2(n(n + 1)2 − n2(n + 2))
(n + 2)(n + 1)2

=
nθ2

(n + 2)(n + 1)2

and

V [θ̃] = (
n + 1

n
)2 · nθ2

(n + 2)(n + 1)2
=

θ2

n(n + 2)

(V(Y) was given in this question-but is easy enough to find!)
V (θ̃1)/V (θ̃) = n+2

3 This is the relative efficiency.

2 Suppose that the null hypothesis H0 : θ = θ0 is to be tested against the alternative H1 :
θ = θ1, and that a random set of observations (x1, x2, x3, · · · , xn) is available, The likelihood
functions on the two hypotheses are Ln(θ0), Ln(θ1) and the ratio λn = Ln(θ0)/Ln(θ1)

The sequential probability ratio test continues sampling more observations so long as A <
λn < B, for suitably chosen constants A, B with A < B. It stops and accepts H0 if λn ≥ B,
and stops and accepts H1 if λn ≤ A. If α, β are types I and II Errors respectively, the
approximations to the stopping boundaries are A

.= α
1−β and B

.= 1−α
β

(i)

Ln(θ) =
1

{ln(θ)}n
n∏

i=1
xi

· (θ − 1
θ

)

n∑
i=1

xi

, for θ > 1,

λn(θ) =
Ln(2)
Ln(4)

= (
ln4
ln2

)n(
1/2
3/4

)
∑

xi = 2n(
2
3
)
∑

xi

A
.= 0.01

0.99 = 1
99 and B

.= 0.99
0.01 = 99 continue sampling which 1

99 < 2n(2
3)

∑
xi < 99 i.e.

−ln99 < nln2− (
∑

xi)(ln
2
3
) < ln99, or

−4.5951 < 0.6931n− 0.4055
∑

xi < 4.5951, i.e.

0.709n− 11.333 <
∑

xi < 1.709n + 11.333
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(ii) Stop and decide for H0 if
∑

xi ≤ 1.709n − 11.333; and stop and decide for H1 if∑
xi ≥ 1.709n + 11.333, as in the graph:

With each new observation,plot
∑

xi against n,and stop as soon as one of acceptance
boundaries is reached on this graph.

(iii)

Let Z = ln(
P0(xi)
P1(xi)

) = ln(2) +
2
3
xi, (i = 1, 2, · · · , n)

E[X] =
∞∑

k=1

1
ln(θ)

(
θ − 1

θ
)k =

1
ln(θ)

· θ − 1
θ

· 1
1− θ−1

θ

=
θ − 1
lnθ

E0[Zi] = ln2 + 2
3 · 1

ln2 for H0; this is 1.6549 Expected sample size on H0 is

E[n] =
αlnA + (1− alpha)lnB

E0(Zi)
which is

−0.01ln99 + 0.99ln99
0.6549

= 2.72

say n is about 3.

3 Merits include: ML estimators have good asymptotic properties-asymptotic unbias, asymp-
totic efficiency, asymptotic normality. They are invariant and are functions of the minimal
sufficient statistics;
Subject to regularity conditions, they have minimum variance if there exists an estimator
which satisfies the Gamer Rao lower bound, or if they are unbiased; computing methods such
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as Newton-Raphson or scoring can find solutions to normal equations if necessary;
Censored samples can be handled, and variable sample sizes can be used in related studies.
The likelihood argument has intuitive logical appeal. limitations include: ML estimators may
be biased, which can be serious in small sample;
They can be quite difficult to complete directly; Their distributions in small samples can be
intractable; Therefore limits for estimates in these cases are not easy to obtain;
The normal equations can be hard to solve in the case of several parameters, or for some spe-
cial distributions leg cauchy or those like exp(−√x− θ)-or in some pathological situations (of
stein; Neyman and Scott); analytical solutions may not give proper answers, as in the uniform
distribution.

(i)

L(σ) =
n∏

i=1

(
1

σ
√

2π
exp{−1

2
(
xi

σ
)2}) = (2π)−

1
2
nσ−nexp(− 1

2σ2

∑
x2

i ), σ > 0

lnL(σ) = −1
2
ln(2π)− nlnσ − 1

2σ2

n∑

i=1

x2
i , and so

dlnL

dσ
= −n

σ
+

1
σ3

∑
x2

i

d2(lnL)
dσ2

=
n

σ2
− 3

σ4

∑
x2

i , Solving
dlnL

dσ
= 0

gives

σ̂ =
√

1
n

∑
x2

i ;
d2(lnL)

dσ2
< 0

for this value,so this is a maximum.

(ii) The ”Fisher Information” I(σ) = E(−d2(lnL)
dσ2 ) = − n

σ2 + 3
σ4 E[

∑
x2

i ]
Now E[x2]V [x]+[E(x)]2 = σ2(+0) in this distribution. Hence I(σ) = − n

σ2 + 3
σ4 ·nσ2 = 2n

σ2

The asymptotic distribution of σ̂ will be N(σ, σ2

2n), and an approximate 90% confidence
interval is σ̂ ± 1.645σ̂/

√
2n

(iii) In this problem, x
σ ∼ N(0, 1) and so x2

σ2 ∼ χ2
(1); Therefore by independence of χ2 distri-

butions
n∑

i=1

x2
i

σ2 ∼ χ2
(n) This sum of squares is a function of σ whose distribution does not

depend on σ, and so is a pivotal quantity.
Hence a 90% confidence interval for σ is R1 <

∑
x2

i

σ2 < R2 where R1 and R2 are the lower
and upper 5% points of χ2

n if n = 12, R1 = 5.23, R2 = 21.03, and the interval is

5.23 <
0.46
σ2

< 21.03, i.e. for σ it is (0.15, 0.30)

4 (i) On the given NH, H0 : λ1 = λ1, with AN H1 : λ1 6= λ2 the likelihood function is

L(λ1, λ2) =
m∏

i=1

(λ1e
−λ1xi)

n∏

j=1

(λ2e
−λ2yj ), (λ1, λ2 > 0)
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which on H1 is λm
1 λn

2e−λ1mx̄−λ2nȳ ,where x̄ =
∑

xi

m , ȳ =
∑

yj

n Then lnL = mlnλ1 +
nlnλ2 − λ1mx̄− λ2nȳ,and

∂

∂λ1
(lnL) =

m

λ1
−mx̄;

∂

∂λ2
(lnL) =

n

λ2
− nȳ

Setting these derivatives equal to 0 gives λ̂1 = 1/x̄, λ̂2 = 1/ȳ. On H0 L simplifies to
gives lnL = (m + n)lnλ− λ(mx̄ + nȳ) where λ1 = λ2 = λ, thus

∂

∂λ
(lnL) =

m + n

λ
− (mx̄ + nȳ) and λ̂ =

m + n

mx̄ + nȳ

The likelihood ratio statistic L0/L1 is

∧(x, y) = (
m + n

mx̄ + nȳ
)m+ne−(m+n)/(x̄−mȳ−ne−(m+n)) = (

ȳ

x̄
)n(

m + n

m + nȳ/x̄
)m+n

(ii) Using the given result that Mx(t) = λ
λ−t , and mx̄ =

∑
xi, we have

Mmx̄(t) =
m∏

i=1

Mxi(t) = (
λ1

λ1 − t
)m, for t < λ1

and for 2λ1mx̄ the mgf is Mmx̄(2λ1t) = (1− 2t)−m, t < 1/2 By the uniqueness property
of mgf’s, it follows that 2λ1mx̄ ∼ χ2

(2m); similarly 2λ2nȳ ∼ χ2
(2n) and thus

2λ2nȳ/2n

2λ1mx̄/2m
∼ F(2n,2m); i.e. under H0

ȳ

x̄
∼ F(2n,2m)

(iii) The generalised likelihood ratio test has critical region {x :
∧

(x) ≤ K} for some K; and
so the test of size will reject H0 if ȳ/x̄ ≤ R1 or ȳ/x̄ ≥ R2 where R1 R2 are respectively
the lower and upper α

2 % points of F(2n,2m). When m = 37, n = 39 and α = 0.05, R1 =
0.6, R2 = 1.6 But ȳ/x̄ = 0.9, and so we cannot reject H0 at the 5% level.

5 (i) p̂ = 180
250 = 0.72. The number killed , r is Bin(n,p) and for sufficiently larger, and not too

extreme a value of p, this is approximated by N(np, np(1 − p)); hence the proportion
r/n is N(p, p(1−p)

n ) and a 95% confidence interval for the true p based on the sample
proportion is given as

P (−1.96 <
p̂− p√

p(1− p)/250
) < 1.96 = 0.96

in which we must use p̂ when estimating the standard error
√

p(1− p)/250. Hence the
interval is

p̂− 1.96

√
p̂(1− p̂)

250
< p < p̂ + 1.96

√
p̂(1− p̂)

250

This approximate 95% interval has limits

0.72± 1.96
√

0.72× 0.28
250

= 0.72± 0.056, i.e.(0.664, 0.776)
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(ii) The prior distribution of p is π(p) = 1, 0 < p < 1 Also R|P is Binomial (250,p). So the
posterior distribution of p is

Π(p|R = 180) ∝ 1 ·
(

250
180

)
p180(1− p)70 ∝ p180(1− p)70, 0 < p < 1

This makes p|R = 180 Beta(181, 71), i.e.

Π(p|R = 180) =
Γ(252)

Γ(181)Γ(71)
p180(1− p)70, 0 < p < 1

(iii) E[p|R = 180] = 181
252 and V [p|R = 180] = 181×71

2522×253
; and so an approximate 95% confidence

interval using normal theory will be

181
252

± 1.96

√
181× 71

2522 × 253
or 0.718± 0.055, i.e.(0.663; 0.773)

(iv) The number killed out of is Binomial (4,p) and so P (3) = 4p3(1− p) (NOTE-for interest
only-if we set p=0.72 this is 0.418)
The Bayesian prediction of probability is

E[4p3(1− p)] =
∫ 1
0 4p3(1− p) Γ(252)

Γ(151)Γ(71)p
180(1− p)70dp

= 4
∫ 1
0

Γ(252)
Γ(181)Γ(71)p

183(1− p)71dp

= 4×183×182×181×71
255×254×253×252 = 0.4146

6 Suppose that independent random sample are available from two populations whose distri-
butions are of the sample, although the family of distributions is not known (and will usually
not be supposed symmetrical, so that a normal model would not be appropriate). The Mann-
Whitney test compares the location parameters (e.g.medians)in this situation.
Given two sample A and B, compare each member of A in turn with each member of B; UAB

is the number of pairs in which the A-value is less than the B-value. If A contains in items and
B contains n items,the number if different ways in which the A’s and B’s can be ordered in the

combined sample of size(m+n)is

(
m + n

m

)
. Under the Null Hypothesis H0, that the location

parameters of A and B are equal, each of these ways is equally likely. The observed value,
u, of UAB has expectation 1

2mn; for u ≤ 1
2mn, its one-sided significance is the probability of

UAB being ≤ u on H0, i.e. the number of orderings of the A’s and B’s such that UAB, divided

by

(
m + n

m

)
, This is found by direct enumeration.(This significance has to be doubled for

2-sided Alternative Hypothesis)
The value in Table XIV are the largest values of w such that P (UAB < w) under H0 is ≤ the
given value of p.m=12, n=7 and the ordered combined data are:

70 83 85 94 97 101 104 107 107 113 118 119 123 124 129 132 134 146 161
B A B B A B A B A A B A A A A B A A A
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with A denoting the high-protein weights.

UAB = 0 + 1 + 1 + 2 + 3.5 + 5 + 9 = 21.5

Considering each B in order and counting A’s below it .The tie between an A and a B leads
to the value 3.5. The critical region at the 5% level for a 2-sided alterative is UAB < 19,and
at 10% is UAB < 22. Hence there is evidence against H0 at a probability level somewhere
between 5% and 10% (nearer to 10% than 5%).

7 A decision rule is a function from the sample space to the action space. The risk of a decision
rule δ at parameter value θ, Rδ(θ), is the expected loss. A decision rule is called minimax if
its risk R∗ satisfies:

sup
θ

R∗(θ) ≤ sup
θ

Rδ(θ) for all δ ∈ D

Where D is the decision space.

(i)

P (X ≥ k) =
∞∑

j=k

(1− p)pj = (1− p)pk(1 + P + p2 + · · ·) = (1− p)pk 1
1− p

= pk

The risk Rk(δ) of δk is

Rk(p) = { 4P (X < k) = 4(1− pk) for p > 0.7
−8P (X < k) + 2P (X ≥ k) = −8 + 10pk for p ≥ 0.7

For P > 0.7 ,the maximum rise is 4(1− 0.7k)since the risk is an increasing function of k.
For P ≤ 0.7,−8+10pk decreases as k increases and so the maximum risk is −8+10(0.7k).
Thus the maximum risk are:

δ0 δ1 δ2

2 1.2 2.04
(B) (A) (A)

so the minimax is δ1.

(ii) The Bayes Risk

B(k) =
∫ 1

0
Rk(p)dp =

∫ 0.7

0
(−8 + 10pk)dp +

∫ 1

0.7
4(1− pk)dp

= [−8p +
10pk+1

k + 1
]0.7
0 + [4(p− pk+1

k + 1
)]10.7

= −5.6 +
10(0.7)k+1

k + 1
+ 4− 4

k + 1
− 2.8 +

4(0.7)k+1

k + 1
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= −4.4− 4
k + 1

+
14(0.7)k+1

k + 1
(k = 0, 1, 2, · · ·)

(iii)

B(k + 1)−B(k) =
−4

k + 2
+

4
k + 1

+
14(0.7)k+2

k + 2
− 14(0.7)k+1

k + 1

=
4

(k + 2)(k + 1)
+

14(0.7)k+1

(k + 1)(k + 2)
{4− 14(0.7)k+1(0.3k + 1.3)} < 0

if and only if 14(0.7)k+1(0.3k + 1.3) > 4

Now (0.7)k+1(0.3k + 1.3) decreases as k increases, as may be shown by computing the
first few value; and for k=5, 6 we have (0.7)6(0.3×5+1.3) = 0.33 which is > 4

14(0.286),
while (0.7)7(0.3 × 6 + 1.3) = 0.255 which is < 4

14 , showing that B(5) > B(6); but also
from the second inequality which is violated we see B(7) > B(6). Hence δ6 achieves the
smallest Bayes Risk.

8 For simple hypothesis H0 : θ = θ0(N.H.) and H1 : θ = θ1(A.H.) in a probability density (or
mass)function f(x, θ), the Neyman-Pearson method uses the likelihood ratio test of the form

c = {x :
f(x, θ0)
f(x, θ1)

≤ k}

for some suitable k. H0 is rejected when the AH gives the better explanation, i.e. k is small;
the size of k is chosen to make the probability of falling in the critical region when θ = θ0 equal
to the specified significance level.

(i)

L(v) =
n∏

i=1

e−λvi
(λvi)xi

/xi! = exp(−λ
n∑

i=1

vi)λ
∑n

i=1
xiv

∑n

i=1
ixi/

n∑

i=1

xi! v > 0

∧
=

L(1)
L(2)

=
e−nλλ

∑
xi

e−λ
∑

2i
λ
∑

xi2
∑

ixi
=

e−nλ

[e−λ(2n+1−2)2
∑

ixi ]

Hence the critical region is {x :
∑n

i=1 ixi ≥ k′} since
∧

decreases as
∑

ixi increases.

(ii) Write Y =
∑n

i=1 ixi; under H0 E[Y ] = λ
∑

i = 1
2λn(n + 1) and V [Y ] = λ

∑
i2 =

1
6λn(n + 1)(2n + 1). Calling these µ and σ2, and using a continuity correction,

P (Y ≥ k′|v = 1) .= Φ(
k′ − 0.5− µ

σ
)

is the significance level.Hence k′ is chosen by equating this to α.

(iii) For λ = 1
3 and n = 2 observations, on the NH both x, and x2 are Poisson (1/3).

P (x1 + 2x2 > 2) = P (x1 > 2) + P (x1 = 1 or 2)P (x2 ≥ 1) + P (x1 = 0)P (x2 ≥ 2) =
1−0.7165−0.2388−0.0398+(0.2388+0.0398)(1−0.7165)+0.7165(1−0.7165−0.2388) =
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0.1156
This is the significance level.
On the AH,x1 is Poisson(2/3) and x2 is Poisson(4/3).The power is P (x1 + 2x2 > 2) =
1−0.5134−0.3423−0.1141+(0.3423+0.1141)(1−0.2636)+0.5134(1−0.2636−0.3515 =
0.5639)

Applied Statistics I

1 (i) α + 2β = π. Assume that we measure A n times, and B and c altogether 12− n times.
Then

Ai = α + εi (i = 1 to n), E[εi] = 0, V [εi] = σ2

and
Bj = β + εj (j = 1 to 12− n), E[εj ] = 0, V [εj ] = σ2.

Minimize
n∑

i=1

ε2
i +

12−n∑

j=1

ε2
j , i.e.

n∑

i=1

(Ai − α)2 +
12−n∑

j=1

(Bj − β)2

Using the constraint on α, β this is simplifies, to

S =
n∑

i=1

(Ai − π + 2β)2 +
12−n∑

j=1

(Bj − β)2

dS

dβ
= 4

n∑

i=1

(Ai − π + 2β)− 2
12−n∑

j=1

(Bj − β) = 0 for a minimum(or maximum)i.e.

2
n∑

i=1

Ai − 2nπ + 4nβ̂ −
12−n∑

j=1

Bj + (12− n)β̂ = 0 or

2
n∑

i=1

Ai − 2nπ −
12−n∑

j=1

Bj = (n− 12− 4n)β̂.Hence

β̂ = (2nπ − 2
n∑

i=1

Ai +
12−n∑

j=1

Bj)/(3n + 12). Also α̂ = π − 2β̂

(ii) Now by independence,V ar[
∑

Ai] = nσ2 and V ar[
∑

Bj ] = (12− n)σ2 so

V ar[β̂] =
4nσ2 + (12− n)σ2

(3n + 12)σ2
=

σ2

3n + 12
.

E[β̂] =
2nπ − 2nα + (12− n)β

3n + 12
=

2nπ − 2n(π − 2β) + (12− n)β
3n + 12

= β.
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Hence
E[α̂] = π − 2E[β̂] = π − 2β = α

V [α̂] = 4V [β̂] =
4α2

3n + 12

both α̂ and β̂ are unbiased. By method P:

n = 4, so β̂ =
1
24

(8π − 2
4∑

i=1

Ai +
8∑

j=1

Bj);

α̂ = π − 2β̂, V [β̂] =
σ2

24
, and V [α̂] =

σ2

6
Using Q:

n = 6, so β̂ =
1
30

(12π − 2
6∑

i=1

+
6∑

j=1

Bj);

α̂ = π − 2β, V [β̂] =
σ2

30
, and V [α̂] =

402

30
=

2σ2

15
Q gives smaller variances.

(iii) If possible,minimum variance unbiased estimators are required. Choose n to minimize
the variances.

2 (a) Strict stationarity is when the joint distribution of X(t1), · · · , X(tn) is the same as that
for X(t1 + τ), · · · , X(tn + τ) for all t1, · · · , tn and τ .

Weak stationarity has E[X(t)] constant and the autocovariance for X(t) and X(t + τ)
depends only on the lag separation τ .
In practice, we mean a series with no trend, no seasonal effects and no cyclical changes,
but only irregular fluctuations.

(b) Series 1. This is not stationary,but there is strong evidence of seasonality with large
peaks at 12, 24, · · · A model requires a seasonal term. Seasonal difference should lead to
stationarity.
Series 2. This appears to be stationarity,since there is no obvious pattern,so a model
need only contain ’white noise’.
Series 3. This is not stationary;there is strong evidence of a trend, the autocorrelation
function is decaying slowly, and first differences will be useful.
Series 4. The autocorrelation function dies away quickly, suggesting an AR model. The
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partial autocorrelation function cuts off at 1, or possibly 2, which suggests AR(1), or
AR(2).
Series 5.This is not clear;neither function dies away quickly so ARMA(1,1) may be a
possibility but would need investigating.

3 (a) (1) Leverage is the potential for influencing parameter estimates when a point is in a
relatively extreme position in the x-space.

(ii) H = X(X ′X)−1X ′ .In a model with s parameters, and with n data points, the
diagonal elements of H may be compared with 2s/n, and values higher than this
correspond to points with high leverage.

(b) (i) OD620 and OD740 have a strong positive linear relation, and for OD740 values less
than 25(OD620 < 50) there is very little scatter about a line. Variability about
the same line remains low throughout the range. However the data are heavily
concentrate in the lower region of the graph, with relatively few values in the middle
and just one high value.

(ii) If the linear regression is a good model, these residuals should show a ”normally
distributed” scatter about 0. The plot shows no real evidence to the contrary.
However, the largest residuals are at large values of OD so there may be doubt
whether the variance remains constant. Neither diagram throws doubt on linearity.

(iii) Point 33 was identified as having a large residual and also (because of its position)
influence on parameter estimates. Without it, the line has a large intercept and
lightly smaller gradient.R2 is slightly less became the point removed made a large
contribution to the original total sum of squares. The residual mean square is about
10% lower. These effects are because the point removed was above the original fitted
line and had a high residual.
Also without the high-leverage point and its influence on the gradient,the new gra-
dient has a larger standard error.
Some new ’unusual’ points have appeared due either to their distance from other
points to the change in position of the fitted line and the reduction in residual mean
square.
The new model predicts most of the OD620 points better, and with more preci-
sion,but it should not be used for extrapolation to higher values as the these are
now on the whole less satisfaction predicted. The new model is probably preferred.

4 (i) Plant k is a subsample from pot j receiving treatment i, the pots and the plants are
all different for each treatment, and only the treatment effect may be called ”fixed”.
Asmitable model is

yijk = µ + αi + β(i)j + ε(ij)k

where µ is an overall mean effect
αi is the effect of treatment i (i = 1 to 6);

∑6
i=1 αi = 0, β(i)j is the effect of the jM unit

receiving treatment i (j = 1 to 3) and ε(ij)k is the effect of the kM subunit from unitj
/treatmenti (k = 1 to 4); β(i)j and ε(ij)k are mutually independent.
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(ii) G = 416.5, N = 72, G2/N = 2409.3368.
Total corrected sum of squares is therefore 2665.25− G2

N = 255.9132 s.s. For treatments
= 1

12(44.02 + · · · + 95.02) − G2

N = 179.6424. s.s. between all pots= 1
4(15.02 + 18.02 +

· · · + 29.02 + 35.02) = 2614.8125. so the(corrected), s.s. for pots within treatments is
2614.8125− 2409.3368− 179.6424 = 25.8333. The Analysis of Variance becomes:

SOURCE OF V ARIATION D.F. SUM OF SQUARES MEAN SQARE
Between Treatments 5 179.64 35.93
Between pots 12 25.83 2.15
within treatments residual 54 50.44 0.934
Total 71 255.91

(iii) (1) Null Hypothesis: all treatment effects αi are 0, i.e. all treatment give the same
mean µ. Alternative:not all α are zero. F(5,12) test this: 35.93

2.15 = 16.71 ∗ ∗∗ so we
reject the NH.

(2) Null Hypothesis: σ2
b = 0. Alternative: σ2

b 6= 0, F(12,54) = 2.30∗, so there is evidence
that variability between pots is greater than that within.

(iv) The 5df for treatments could be split into individual contrasts,(1 to 3)versus(4 to 6) for
low versus high temperature(1df), then linear and quadratic components of time within
each temperature, 2df(low)+2df(high).
The constancy of variance over all the pot/plant/treatment groups might be examined.

5 (i) There are very few data. But there is an indication that house increases as condition
improves. As a first approximation three straight lines might be fitted to relate price and
floor area at the three conditions.

(ii) yij = αi + βixij + εij

yij = selling price, αi = intercept for condition i(i = 1, 2, 3),

βi = slope for condition i, xij = floor area of jM house at condition i

(j = 1 to 3, for i = 1 and 3; j = 1 to 5 for i = 2),

εij = random term of mean zero and variance σ2(all i, j)

(iii) The analysis of variance for price shows that the interaction term for condition and area
is negligible.When it is removed (lower half of page 8)both main effects are very highly
significant.

Leaving out either one of these increases the residual mean square substantially area even
more so than condition.No interaction implies that three parallel lines could be used.

(iv) The model therefore becomes yij = αi+βixij +εij . If , Sxy represents the sum of products
XY under condition 1, and, Sxx the corresponding sum of squares for x, the common
slope β is found as (1Sxy +2 Sxy +3 Sxy)/(1Sxx +2 Sxx +3 Sxx). Then αi is estimated as
ȳi − β̂x̄i. Different statistical packages show this in different ways.
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(v) Residual diagnosis and normal plots would be useful to homoscedasticity, normality and
independence (but in this case we have very few data, so the plot of residuals against
fitted values is likely to be the best).

6 (i) The given model is correct (lacks no important terms); xij fixed;E[ε] = 0, V ar[ε] = σ2,
constants; all {eij} are independent.Also ,in analysis, {εij} are normally distributed.

(ii)

Y = Xβ + ε, where Y =




y1

y2

· · ·
yn


 , β =




β1

β2

· · ·
βp


 , ε =




ε1
ε2
· · ·
εn


 , and

X =




1 x11 x21 · · · xp1

· · · · · · · · · · · · · · ·
1 x1n x2n · · · xpn


 , β̂ = (X ′X)−1X ′Y

(iii) (X ′X)−1 may be very unstable, near-singular if two or more x′s are highly correlated.
Studying the scatter grams for all the pairs of x-variables shows whether any are very
highly correlated; if so ,one of the pair should be omitted. Sometimes principal compo-
nents of the x’s can be used instead.

(iv) R2 increases(or stays the same) when the number of predictor variables increases; ad-
justed R2 allows for the number of variables.

(v) Residuals ε̂i are yi − ŷi;
∑

i ε̂
2
i measures lack of fit of the model. They can be studied for

evidence of failure of assumptions(i), and any pattern in the residuals can indicate terms
to be added, or the need for a variance-stabilizing transformation, or possible lack of
normality(symmetry). ε̂i may be plotted against yi, or against x’s , or against any other
x’s that might be suitable to include in the model, or against the order of observations
in a time-series.

(vi) Various packages contain the following items for this purpose:
the hat-matrix elements {hi}
student residuals; student deleted residuals
Cook’s distance statistic
affits; dfbetas; covratio.

7 (a) Grand Total G=1196.3, N=
∑

n = 20. G2/N = 71556.6845. Hence Total ss=120.3055.
s.s. for laboratories=372.12

6 + 298.32

5 + 243.32

4 −G2/N = 87.5697.

SOURCE DF SS MS
Laboratories 3 87.6597 29.19 F(3,16) = 14.27
Residual 16 32.7358 2.046
Total 19 120.3055
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The F-value give strong evidence of difference between laboratories. Means are:

LAB3 1 4 2
56.52 59.66 60.83 62.02

The data suggest that 3 gives lowest, and 2 highest, results; but this would need confir-
mation in further trials.(see iv).

(i) This model is suitable when only these four laboratories are being compared, not if
they had been a random sample from a larger set.

(ii) If they were a sample from a lager set (population)the term for laboratories in the
linear model which is the basis for analysis would be assumed N(0, σ2

l ). The same
analysis would be used , but we would conclude that σ2

l 6= 0, i.e. there is variation
among laboratories carrying out these analysis.

(iii) If these were particular comparisons(contrasts)among the four given laboratories
that were interesting in a fixed effect model we would us t-tests to make these
comparisons. The contrasts must be planned before the analysis is done, not merely
suggested by the data. For a random-effects model the only further calculation might
be approximate confidence limits for σ2

l .

(b) A variance-stabilizing transformation would be
√

y. Otherwise the necessary assumption
of constant variance is violated. If the variance is stabilized, this does not guarantee
(approximate) normality though it often improves the distributional assumption’s va-
lidity. AGLM log-linear model would probably be better for making the distributional
assumptions.

8 (i) The first 5 seem similar; so do the next 3(French, Spanish, Italian); Polish seems to stand
by itself; The last 2 have some similarity.

(ii) The concordances are not fully standardized to be in (0,1), and so each entry is divided
by 10 to give a proper measure of similarity.

(iii) Distance measures must satisfy:

d(X, Y ) ≥ 0, with equality when X = Y ;

d(X, Y ) = d(Y, X); d(X, Z) + d(Y, Z) ≥ d(X,Y ).

The figures in Table 1.3 satisfy these conditions. Clustering proceeds by successively
combining sets of individuals into groups; at each stage individuals or sets which are
’closest’ are combined. Starting from the distance matrix, methods vary according to
how we define distance between an individual and an existing grouping. Single-link
clustering is attaching a new point to that group which contains the nearest point to it.
Complete clustering attaches it to that group where the furthest existing member is as
near as possible.

(iv) Euclidean(geometric)distance is the usual graphical idea: in two dimensions

d =
√

(x2 − x1)2 + (y2 − y1)2
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Single linkage begins with two groups at the same distance:
N, Da and Fr, Sp, I; next add to 1st group E; then add to second group P ; then G to
1st group. Then these two groups are merged and Da added. Complete linkage takes as
the first two groups N, Da and Sp, I to which add E and Fr at the same distance. Then
form a new group Du, G and add P to Fr, Sp, I. Later N, Da, E and Fr, Sp, I, P
can be combined, then H, Fi can be combined and finally these are added to Du, G.
Average linkage (center of gravity) goes up to adding P to Fr, Sp, I just as complete
links but Du, G only happens after this. This time Du, G combines with E, N, Da
instead of H, Fi.
Note that we use only the first letter to judge similarity; it would be better to consider
spelling (and sound). Hence the method is rather rough-and-ready, but it does indicate
that E, N, Da go together and so do Fr, Sp, I. The position of Du, G is arguable,
and P is nearer to Fr, Sp, I than first glance suggested. H, Fi can be grouped rather
weakly.

Applied Statistics II

1 (a) When v treatments are to be compared, and two systematic sources of variation exist
among the units (plots) available, a Latin square design is one way of removing these
sources. The design is in v rows and v columns, arranged so that each treatment occurs
once in each row and once in each column.
A B ×B square is

A C B
B A C
C B A

and a 4× 4 is
A D B C
C A D B
B C A D
D B C A

There are v2 units. Therefore when v = Bor4 we have a design that will usually be too
small to give a precise experiment. As in the following example, more than one complete
square will need to be used.

(b) The systematic variation between days is removed in rows, and that between rabbits in
columns. The treatments may be split into a factorial scheme of main effects (prepara-
tions, doses) and interaction.

(i) Treatment totals are; A, 486; B, 358; C, 480; D, 374. G = 1698. N = 32. Cor-
rection term G2/N = 90100.125.
Treatment s.s. = 1

8(4862 + 3582 + 4802 + 3742)−G2/N = 1729.375
Corrected total s.s. = 6417.875. s.s.Rows= 3812+···+4102

8 − G2/N = 599.625.
s.s.Columns = 1

4(1602 + · · ·+ 2032)−G2/N = 3244.375.
Assuming that the two squares need not be separated, i.e. the rabbits all come from
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the same population, we have:

SOURCE DF SUM OF MEAN
OF V ARIATION SQUARES SQURE
ROWS(DAY S) 3 599.625 199.875 F(3,18) = 4.26

Columns(Rabbits) 7 3244.375 463.482 F(7,18) = 9.88
Treatments(Doses) 3 1729.375 576.458

Residual 18 844.500 46.9167 = s2

Total 31 6417.875

Clearly there is a day effect and a difference between rabbits.

(ii) The appropriate factorial set is :

(A, B) versus (C, D)− standard/test
(A, C) versus (B, D)− dose leves
(A, D) versus (B, C)− interaction

(iii) They may be computed as contrasts:

A B C D
Preparations −1 −1 1 1

Levels −1 1 −1 1
Interaction −1 1 1 −1

or as sums of squares:

(A,B) vs (C,D) :
8442 + 8542

16
− 16982

32
= 3.125

(A,C) vs (B, D) :
9662 + 7322

16
− 16982

32
= 1771.125

(A,D) vs (B, C) :
8602 + 8882

16
− G2

N
= 15.125

Each has 1 d.f. Only the dose levels are significant(use F(1,18)). The blood sugar is
higher (0.1% level) at 0.6 than at 1.2.
Summary: there are differences between days, between rabbits and between doses,
but not between preparations. Doses and preparations do not interact. (prepara-
tions/doses) do not interact.

2 (i) The eight treatment combinations used all had an odd number(1,3 or 5)of letters in com-
mon with ACE and with BDE ; ABCD is the generalized interaction of these two and
therefore also appears in the defining contrast.
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(ii) The alias structure is I = ACE = BDE = ABCD and therefore

A = CE = ABDE = BCD
B = ABCE = DE = ACD
C = AE = BCDE = ABD
D = ACDE = BE = ABC
E = AC = BD = ABCDE
AB = BCE = ADE = CD
AD = CDE = ABE = BC

(iii) Labelling each alias group by its lead number in the list above, we compute from the
eight treatment combinations used as follows:

e ad bde ab cd ace bc abcde value effect estimate
A − + − + − + − + 2.4 0.60
B − − + + − − + + 19.6 4.90
C − − − − + + + + 6.6 1.65
D − + + − + − − + 7.4 1.85
E + − + − − + − + 8.8 2.20

AB + − − + + − − + −12.2 −3.05
AD + + − − − − + + 4.0 1.00

8.7 12.0 17.5 11.0 9.0 13.0 16.1 17.7

A is the difference between all with a and all without,etc. AB is the ”interaction” or
inner product of the A and B rows. With apparently, no proper replication no estimate
of residual variability is possible and hence no tests of significance.

(iv) It is invalid to construct a residual by inspection of the data. Assumptions need to
be made about which interactions may be neglected, usually only higher order ones
unless some others have featured in earlier experiments. The aim of a properly designed
experiment should be to estimate all main effects and lower order interactions(at least
the 2-factor ones) about which information is not already available.

In a very small design such as a fractional factorial only large effects(the B and AB alias
sets here) will be detectable, and there are no alias sets that contain only high order
interactions. This design by itself can tell us very little.

3 (i) The score yij consists of a general average score µ plus a departure from this αi repre-
senting the effect of the treatment given to group i plus a random natural variation term
εij for each individual.

(ii) The analysis proceeds by estimating the parameters µ, αi by the method of least squares.
µ̂ = ¯̄y, the overall mean of the N observations, and α̂i = ȳi− ¯̄y, where ȳi is the mean for
group i. The residual sum of squares is:

∑

i,j

e2
ij =

C∑

j=A

ni∑

j=i

(yij − µ̂− α̂i)2 =
∑ ∑

[(yij − ¯̄y)− (ȳi − ¯̄y)]2
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Hence:

E[RSS] = E
∑C

i=A

∑ni
j=1[(εij − ¯̄ε)− (ε̄i − ¯̄ε)]2

=
∑

i

∑
j E[(εij − ¯̄ε)2 + (ε̄i − ¯̄ε)2 − 2(εij − ¯̄ε)(ε̄i − ¯̄ε)]

=
∑

i

∑
j [V ar(εij + V ar(ε̄i)− 2COV (εij , ε̄i)]

=
∑

i

∑
j(σ

2 + σ2

ni
− 2σ2

ni
)

since E(εij) = 0 for all i, j; V [εij ] = σ2 for all i, j; and the {εij} are uncorrelated for all
i 6= j. So

E[RSS] = σ2
C∑

i=A

j=1∑
ni

(1− 1
ni

) = σ2
C∑

i=A

ni(1− 1
ni

) = σ2(N − 3)

where N =
∑

i ni.

(iii) The total sum of squares with (N−1) degrees of freedom can be partitioned into compo-
nents due to the differences between the 3 treatment groups, with 2 d.f., and the residual
within all treatments, with (N − 3) d.f.
Cochraus Theorem for m i.i.d.N(0, 1) variables {Zi} says that if

∑m
i=1 Z2

i = Q1 + Q2 +
· · ·+Qs, where {Qj} are quadratic forms with m1,m2, · · · ,ms d.f. (and s ≤ m) then the
{Qj} are independent χ2

(mj)
variables if and only if m =

∑s
j=1 mj .

Here SS for treatments and the total SS has (N − 1) d.f.; so SS treatments
σ2 and residual SS

σ2

are independent χ2. Assuming normality of residuals {εij}, with constant σ2, the ratio
SST/2

RSS/(N−3) ∼ F(2,N−3).

(iv) The pooled estimate of σ2 is s2 = 1
34{10(24.25)2 +12(24.07)2 +12(17.71)2} = 488.1392 A

95% confidence interval for αA−αB is ȳA− ȳB± t(5%,34)

√
s2( 1

11 + 1
13) i.e. −2.2±2.034×

9.051 or −2.2± 18.4 or −20.6 to +16.2. Thus A and B do not appear to differ in effect
(since 0 is in the interval). The contrast 1

2(αA+αB)−αC is estimated by 1
2(ȳA+ ȳB)− ȳC

and so has variance 1
4(σ2

11 + σ2

13 )+ σ2

13 = 17σ2

143 , estimated as 17σ2

143 = 58.0305. A 95% interval
for this contrast is then 24.0 ± 2.034

√
58.0305 i.e. 24.0 ± 15.5 or 8.5 to 39.5. There is

strong evidence that teaching plus treadmill training with or without exercise training,
is a better programme of patient care.

4 (i) Having fitted a first-order(linear)model to the data, the directions in which y increases
most rapidly for x, and x2 are found, and a new center along this live is chosen for a
second experiment in the series. This may be repeated until a line does not fit but a
carve is needed. Then second-order models are used(see later). The idea is to approach
the region of the maximum as quickly as possible.

(ii) X1 = x1−90
10 takes values ±1. Y1 = y1−20

10 is also ±1. Fit

yi = β0 + β1X1iβ2X2i + εi, {εi} i.i.d.N(0, σ2)
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X =




1 −1 −1
1 1 −1
1 −1 1
1 1 1
1 0 0




; X ′X =




5 0 0
0 4 0
0 0 4


 ; β̂ =




b0

b1

b2


 ;

Y =




11
0
29
6
12




; β̂ = (X ′X)−1X ′Y =




1/5 0 0
0 1/4 0
0 0 1/4







1 1 1 1 1
−1 1 −1 1 0
−1 −1 1 1 0







11 0
29
6
12


 =




1/5 0 0
0 1/4 0
0 0 1/4







58
−34
24


 =




11.6
−8.5
6.0


, so that y = 11.6− 8.5X1 + 6.0X2.

(iii) dy
dx1

= −8.5 and dy
dx2

= 6.0, so these give the gradient of the steepest ascent line: as θ
changes (x1, x2) = (−8.5θ, 6.0θ) dies on this line.

(iv) In the original units, (90− 85θ, 20 + 60θ) gives the line. For the next 6 runs,

θ = 0.3 gives x1 = 64.5 and x2 = 38;

θ = 0.5 x1 = 47.5 x2 = 50;

θ = 0.6 x1 = 39.0 x2 = 56;

θ = 0.7 x1 = 30.5 x2 = 62;

θ = 0.55 x1 = 43.25 x2 = 53;

θ = 0.65 x1 = 34.75 x2 = 59,

so all are on the steepest ascent line.

(vi) The point of maximum response(39,56) could be taken as the center of a design for fitting
a second-order surface. Either some more points could be added here and the two points
just above and below it combined in an analysis; or a central composite design taking,
say,(40.55) as center for simplicity, moving a short distance,such as ±5 in x1 and ±3.5
in x2, to give the corners.

5 (a)
Wh = proportion of total population in statum h;

Nh = total number of units in stratum h;

nh = number of units sampled in stratum h;

Ph = the propotion of units with a particular attribute in stratum h;

L = the number of strate.

27



28



(b)(i) Minimize V ar(pst) subject to the constraint C − c0 =
∑L

h=1 chnk. By the lagrange
multiplier technique, minimize V + λC.

S = V + λC =
L∑

h=1

W 2
hPhQh

nh
−

L∑

h=1

W 2
hPhQh

Nh
+ λ(c0 +

L∑

h=1

chnh)

∂S

∂nh
= −W 2

hPhQh

n2
h

+ λch = 0 if nh = Wh

√
PhQh

λch
for h = 1, 2, · · · , L

(ii) If N = total population size, Wh = Nh/N. If V is fixed,

V =
L∑

h=1

W 2
hPhQh(

1
Wh

√
λch

PhQh
− 1

Nh
) =

L∑

h=1

Wh

√
λPhQhch −

L∑

h=1

WhPhQh/N

Hence
√

λ = (V +
1
N

L∑

h=1

WhPhQh)/(
L∑

h=1

Wh

√
PhQhch)

(c)(i)(ii) For the required width of confidence interval we must have 1.96
√

V (Pst) = 0.1, and
therefore V (Pst) = ( 0.1

1.96)2 = 0.0026031

Area Wh

√
PhQh/ch nh

√
λ WhPhQh Wh

√
PhQhCh

1 0.58736 0.14434 0.084778 0.11013 0.76300
2 0.25814 0.16667 0.043023 0.06454 0.38721
3 0.10612 0.10000 0.010612 0.01698 0.16979
4 0.04837 0.08124 0.003930 0.00511 0.06287

For (ii)
√

λ = 0.0026031+0.19676/2026
1.38287 = 0.0019526, so λ = 3.8127 × 10−6. Using (i), the

values of nh are 43.42, 22.03, 5.43, 2.01, so these are rounded to 43, 22, 5, 2, total 72.

(iii) Total cost = c0 + 387 + 198 + 80 + 32 = c0 + 697 units. (Note: rounding n1, n3 up would
add 25 units.)

6 (a) The target population is that about which we seek information, the study population
that from which data are actually collected, the sampling frame the list of members of
the population used when selection sample members(or equivalent, such as a map).

Sample random sampling is a method of selecting n members out of a population size

N, such that any one of the

(
N
n

)
possible selections has the same probability of being

chosen. Tn the sample random sampling with replacement, each population member
has the same probability of being chosen at each draw, and this may be called an equal
probability method.
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(b) The question is vague, gives no units in which to answer, does not distinguish between
beers, wines, spirits(for which units are different), relies on memory over a long period for
any reasonably reliable answer. If a categorized answer is expected, ”much” or ”little”
will have different interpretations according to age, sex, occupation, leisure activities etc.
Possible replacements are:
(1) How often do you drink alcohol? (tick one box only)

regularly − every day ( )

sometimes− not every day ( )

very occasionally ( )

have given up ( )

have never drunk alcohol ( )

(2) On a typical day, how much would you drink?

beer (points) 1/2 ( ), 1 ( ), 2 ( ), more ( )

wine (glasses) 1 ( ), 2 ( ), 3 ( ), more ( )

spirits (measures) 1 ( ), 2 ( ), more ( )

Note: for an accurate assessment, several questions would be needed, but simple ones
such as these may allow replies to be placed in categories.

(c) Quota sampling is quick, needing no prelimary selection, no preparation if sampling
frame, no time revisiting members not available, can apply the ideas of stratification
while collecting information, without needing to know exactly which units fall into which
strata.

But there is no theoretical method of computing measures of variability, bias exists
due to rather high refusal rates and to easy availability of people interviewed, and to
subjective selection by the interviewer, and does not have randomization to help balance
out uncontrolled factors.

(d) N = 10000, sample size is n, population σ = 35.38 ,width of 5% interval is to be 2× 1.5.
Assuming a normal distribution, the sample mean will be N(Ȳ , (1− n

N )σ2

n ), where Ȳ is

the true mean. So 1.5 = 1.96
√

(1− n
10000( (35.38)2

n )) as a first approximation for n. Thus
( 1.5
1.96×35.38)2 = 1

n − 1
10000 which gives n = 1760.868. There is no need to replace 1.96 by

any t-value with a sample of this size, so take n=1761.

7 (i) The sample is a cluster sample because it consists of whole classes selected from among
all the classes in the school. This process will be much simpler and less disruptive than
locating individuals among all the classes.

(iii) If R = Ȳ /M̄ then r−R = ȳ
m̄−R = ȳ−Rm̄

m̄ . Write di = yi−Rmi, so that µd = Ȳ −RM̄ = 0.
Then ȳ−Rm̄ = d̄, and since it is based on a simple random sample V ar(d̄) = E[d̄−µd]2 =

(1 − f)S2
d

n . Approximating m̄ by M̄ in the ratio, V (τ) = 1
M̄2 E[(ȳ − Rm̄)2] which is

(1−f)S2
d

M̄2n
= 1−f

nM̄2

∑N
i=1

(yi−Rmi)
2

N−1
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(iv) ȳcl = 13790
270 = 51.074. Estimate M̄ by m̄ = 27. For each class, the value of yi −Miȳ is

required, using ȳcl as ȳ. These are:

1 2 3 4 5 6 7 8 9 10
28.854 49.188 −43.628 87.780 −209.332 −62.960 186.372 −110.406 6.706 67.466

The variance of these figures is (111.6356)2. Hence V̂ (ȳcl) = 1
272 (1− 10

108) 1
10(111.6356)2 =

1.5512, and the 95% limits are 51.074±1.96
√

0.5512 i.e. 51.074±2.441 or(48.63 to 53.52)

(v) If the interval is ȳ ± d, then d = 1.96
√

V ar(ȳ). This is to be 1, so V ar(ȳ) = ( 1
1.96)2 =

0.26031. Also N=100, the average clusters size is unknown; use 27 as above. Similarly use
(111.6356)2 for the variance as above. These give 1

272 (1 − n
100) 1

n(111.6356)2 = 0.26031,

or 272×0.26031
111.6356 = 1

n − 1
100 which requires n=39.64; so take n=40.

8
(i) standardization takes account of the different age-group patterns in different areas. Age

standardization adjusts to show what the death rate would be if the proportions in the
age groups were the same in each area. It takes no account of other factors affecting
death rate. Direct standardization defines a standard population and applies to it differ-
ent specific death rates for subgroups being compared. This gives the number of deaths
expected in the standard population if the rates for the subgroups were to apply. Indi-
rect standardization uses a set of specific death rates for the standard population and
applies this to the subgroups. The actual number of deaths in each subgroup may then
be compared with the number predicted from the standard rates.

(ii) The crude death rate is actual number of deaths
total population . For Scotland this is 16866

5100000 = 0.003307,i.e.
3.30 per thousand. For UK, 171179

57649000 = 0.002969,i.e. 2097 per thousand.

(iii)

Age UICpopulation Age− specific death rates Expected deaths
under 35 28226 0.0072 203.227
35− 44 7932 0.2639 2093.255
45− 54 6593 1.2948 8536.616
55− 64 5814 4.3687 25399.622
65− 74 5.75 11.0794 56227.955

75 and over 4009 26.4634 106091.771

Age standardized mortality rate= 198552.446
57649000 = 3.44 per 1000.

(iv) Standardized mortality ratio= observed number of deaths
expected no. of deaths ×100. Expected number of deaths
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is found by using the UK mortality rates with the Scotland population.

Age UK Age specific death rate population expected deaths
under 35 0.0068 2513 17.088
35− 44 0.2011 701 140.971
45− 54 0.9154 580 530.932
55− 64 3.3566 537 1802.494
65− 74 901367 441 4029.285

75 and over 24.3135 328 7974.828

Standardized mortality ratio= 16866
14495.598 × 100 = 116. The mortality ratio in Scotland is

16% higher than for UK as a whole.

(v) Taking the UK as the standard population the age-specific death rates are as in (iv) and
total expected deaths are 14495.598. Applied to the Scottish population figure gives an
indirect standardized rate of 14495.598

5100 = 2.84 per 1000. This is what the Scottish figure
would have been if its age specific pattern had been the same as the UK as a whole.

32


