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Statistical Theory & Methods I

1. Bayes’ Theorem. In a sample space S, suppose that the event E1, E2, · · · are
such that P (Ei) > 0, all i, and P (Ei∩Ej) = 0, all i 6= j, and E1∪E2∪· · · = S.
Let A be any event in S such that P (A) > 0. Then

P (Ei|A) =
P (A|Ej)P (Ej)∑

i

P (A|Ei)P (Ei)

P (A) = 0.6, P (G) = 0.4. For A, X ∼ N(5.2, 0.252) and for G, X ∼
N(5.7, 0.202).

(i) Let D be the event that the patient is diagnosed as Type A. We require to
find P (G|D).

P (D|A) = P (X < 5.5 in N(5.2, 0.252))
= P (Z < 0.3

0.25 in N(0, 1)) = P (Z < 1.2) = 0.8849
Also P (D|G) = P (X < 5.5 in N(5.7, 0.202))

= P (Z < −0.2
0.20 in N(0, 1)) = P (Z < −1) = 0.1589.

Hence P (G|D) =
P (D|G)P (G)

P (D|G)P (G) + P (D|A)P (A)
=

0.1587× 0.4
0.1587× 0.4 + 0.8849× 0.6

=
0.06348

0.06348 + 0.53094
= 0.1068.

(ii) P (Correctt diagnosis) = P (A diagnosed correctly)+P (G diagnosed correctly)

= P (A)P (X < c in N(5.2, 0.252)) + P (G)P (X > c in N(5.7, 0.202)).

Let the p.d.f. and c.d.f. of N(0, 1) be φ(z), Φ(z) respectively. Using X = c as
cut-off point, the probability is

P = 0.6Φ(
c− 5.2
0.25

) + 0.4
{

1− Φ(
c− 5.7

0.2
)
}

.

dP

dc
=

0.6
0.25

φ(
c− 5.2
0.25

)− 0.4
0.2

φ(
c− 5.7
0.20

)

= 2.4 exp(−1
2

{
c− 5.2
0.25

}2

)− 2 exp(−1
2

{
c− 5.7
0.20

}2

)

= 0 when 2.4 exp(−1
2

{
c− 5.2
0.25

}2

) = 2 exp(−1
2

{
c− 5.7
0.20

}2

)

i.e. exp(−1
2

{
c− 5.2
0.25

}2

) =
5
6

exp(−1
2

{
c− 5.7
0.20

}2

)

giving −1
2
(
c2 − 10.4c + 5.22

0.252
) = ln

5
6
− 1

2
(
c2 − 11.4c + 5.72

0.202
)

or
1
2
c2(

1
0.22

− 1
0.252

) +
1
2
c(

10.4
0.252

− 11.4
0.22

) +
1
2
(
5.72

0.22
− 5.22

0.252
) = −0.182
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i.e. 4.5c2 − 59.3c + (189.805 + 0.182) = 0.

Hence c = [59.3±
√

59.32 − 4× 4.5× 189.897]/9

= 6.589± 1
9

√
96.724 = 6.589± 1.093 = 5.496 or 7.682.

Clearly the cut-off point must lie between the two means (5.2 and 5.7); and
so c ≈ 5.5.

2. (i) Let Z = X + Y . Then Z = z if X = x and Y = z − x for z =
0, 1, 2, · · · , n + m.

P (Z = z) =
z∑

x=0

P (X = x and Y = z − x) =
z∑

x=0

P (X = x)P (Y = z − x)

=
z∑

x=0

( n

x
)θx(1− θ)n−x( m

z − x
)θz−x(1− θ)(m−z+x)

= θz(1− θ)m+n−z
z∑

x=0

( n

x
)( m

z − x
)

= ( m + n

z
)θz(1− θ)m+n−z ∼ B(m + n, θ).

However, the final step depends on an algebraic result for ( n

r
) which is

not very “well known”, and a more satisfactory proof is to use probability
generating functions, as follows. This method also makes it clear that the
result is only true when θ is the same in both distributions.

The p.g.f. for B(n, θ) is G(t) = p0t
0 + p1t

1 + · · ·+ pkt
k + · · · which is

n∑

r=0

( n

r
)θr(1− θ)n−rtr =

n∑

r=0

( n

r
)(θt)r(1− θ)n−r = {θt + (1− θ)}n

= {1 + θ(t− 1)}n .

We require the result that for the sum of two independent random variables,
Gx+y(t) = GX(t)Gy(t). Thus Gx+y(t) = {1 + θ(t− 1)}m {1 + θ(t− 1)}n =

{1 + θ(t− 1)}m+n

which is Binomial(m+n, θ) by the equivalence theorem between distributions
and their pgf ′s,

(ii)

P (X = x|X + Y = z) = P (X = x ∩ Z = z)/P (Z = z)
= P (Y = z − x ∩X = x)/P (Z = z)
= ( n

x
)θx(1− θ)n−x( m

z − x
)θz−x(1− θ)m−z+x/( m + n

z
)θz(1− θ)m+n−z

= ( n

x
)( m

z − x
)/( m + n

z
) , a hypergeometric distribution.
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(iii) n = 10, m = 30, θ = 0.1, z = 5, x = 2, so the conditional distribution is
10!
2!8!

· 30!
3!27!

· 5!35!
40!

= 0.278.

3. (i) f(y|X = x) =
f(x, y)
f(x)

and so E[Y |X = x] =
∫ ∞

−∞
y · f(x, y)

f(x)
dy.

Therefore E[h(x).E(Y |X = x)] =
∫ ∞

−∞

{
h(x)

∫ ∞

−∞
y
f(x, y)
f(x)

dy

}
f(x)dx

=
∫ ∞

−∞

∫ ∞

−∞
h(x) · y · f(x, y) · dydx = Ex[h(x).Y ].

(ii) E[Y ] = E {E(Y |X = x)} = E {α + βX} = α + βE[X].

E[XY ] = E[X · E(Y |X = x)] = E[αX + βX2] = αE[X] + βE[X2].

P (X, Y ) =
E[XY ]− E[X]E[Y ]√

V [X]V [Y ]
=

αE[X] + βE[X2]−E[X](α + βE[X])√
V [X]V [Y ]

=
β

{
E[X2]− (E[X])2

}
√

V [X]V [Y ]
= β

√
V [X]
V [Y ]

.

Hence β = ρ(X, Y )

√
V [Y ]
V [X]

; α = E[Y ]−E[X]ρ(X,Y )

√
V [Y ]
V [X]

.

(iii) Using the relation V [Y ] = V [E(Y |X)] + E[V (Y |X)], we have

V [Y ] = V [α + βX] + E[σ2] = β2V [X] + σ2.

So σ2 = V [Y ]− β2V [X] = V [Y ]− ρ2 V [Y ]
V [X]

V [X] = (1− ρ2)V [Y ].

4. (i)

F1(x) = P (X1 ≤ x) = 1− P (X1 > x)
= 1− P (all observations are greater than x)
= 1− {1− F (x)}n .

(ii)

Fj(x) = P (Xj ≤ x) = P (at least j observations ≤ x)

=
n∑

k=j

( n

k
) {F (x)}k {1− F (x)}n−k,

the sum of probabilities in a binomial distribution with p = F (x), since the
sample is categorized into those ≤ x and those > x. The individual terms
in the sum are the bj(x) as defined, beginning from k = j and continuing
through j + 1, j + 2, · · · up to n.

(iii) For U(0, 1), F (x) = x, 0 ≤ x ≤ 1.
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Hence bj(x) = ( n

j
)xj(1− x)n−j and therefore

d

dx
bj(x) = ( n

j
)
{
jxj−1(1− x)n−j − xj(n− j)(1− x)n−j−1

}

=
n!

(j − 1)!(n− j)!
xj−1(1− x)n−j − n!

j!(n− j − 1)!
xj(1− x)n−j−1

(iv)

fj(x) =
d

dx
Fj(x) =

d

dx
{bj(x) + bj+1(x) + · · ·+ bn(x)}

=
bj(x)
dx

+
bj+1(x)

dx
+ · · ·+ bn(x)

dx

=
n!xj−1(1− x)n−j

(j − 1)!(n− j)!
− n!xj(1− x)n−j−1

j!(n− j − 1)!
+

n!xj(1− x)n−j−1

j!(n− j − 1)!

−n!xj+1(1− x)n−j−2

(j + 1)!(n− j − 2)!
+ · · · − · · ·+ n!xn−2(1− x)

(n− 2)!1!

− n!xn−1

(n− 1)!0!
+

dbn(x)
dx

But bn(x) = xn, so the last term is nxn−1 which cancels with the previous
one.

Hence fj(x) =
n!

(j − 1)!(n− j)!
xj−1(1− x)n−j , j = 1, 2, · · · , n.

5. The old and new variables are related by X = UV ; Y = (1 − U)V . The

Jacobian of the transformation is

∣∣∣∣∣
∂x
∂U

∂x
∂V

∂y
∂U

∂y
∂V

∣∣∣∣∣ =

∣∣∣∣∣
V U

−V 1− U

∣∣∣∣∣ = V .

The joint distribution f(X, Y ) =
θα+βe−θ(x+y)xα−1yβ−1

T ′(α)T ′(β)
which becomes

v · θα+β · e−vθ · vα+β−2 · uα−1(1− u)β−1

T ′(α)T ′(β)
0 < u < 1

v > 0

=
θα+β

T ′(α)T ′(β)

{
uα−1(1− u)β−1

} {
e−vθvα+β−1

} 0 < u < 1
v > 0.

This is

{
θα+β

T ′(α + β)
e−vθvα+β−1

} {
T
′
(α + β)

T ′(α)T ′(β)
uα−1(1− u)β−1

}
0 < u < 1

v > 0.

which shows

(1) that U, V are independent (by factorisation);
(2) that V is gamma with parameters θ, (α + β);
(3) that U is B(α, β).
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If X,Y are both exponential then α = β = 1 and the distribution of the

proportion U is
T
′
(2)

T ′(1)T ′(1)
u0(1− u)0 = 1 (0 < u < 1),

i.e. uniform on (0, 1). This is the distribution W .

6. (i)

Mx(t) = E[ext] =
∫ ∞

0
ext · θe−θxdx =

∫ ∞

0
θe−(θ−t)xdx

= θ

[
− 1

(θ − t)
e−(θ−t)x

]∞

0

(t < θ)

= θ/(θ − t). [This may be written 1/(1− t/θ)].

d

dt
(Mx(t)) = θ/(θ − t)2, E[X] = M

′
(0) = 1/θ

d2

dt2
(Mx(t)) = 2θ/(θ − t)3, E[X2] = M

′′
(0) = 2/θ2

and V [X] =
2
θ2
− (

1
θ
)2 = 1/θ2.

(ii) For the mgf of a (total xθ/
√

n) we require

Mz(t) = e−nt/
√

n(Mx
{
θt/
√

n
}
)n

= e−t
√

n(
1

1− t/
√

n
)n

loge Mz(t) = −t
√

n− n loge(1 +
{−t/

√
n
}
)

= −t
√

n− n

{
− t√

n
− 1

2
t2

n
− 1

3
t3

n3/2
− · · ·

}

=
1
2
t2 +

1
3
t3/
√

n + · · · o(1/√n) · · ·
→ 1

2
t2 as n →∞

Hence Mz(t) → e
1
2
t2 .

Therefore Z follows a standard normal distribution.

7. (a) X ∼ N(µ, σ2), so f(x) =
1

σ
√

2π
exp(−1

2

{
x− µ

σ

}2

), Z =
X − µ

σ
is a

monotonic function of x, with
dX

dZ
= σ.

So g(z) =
1

σ
√

2π
exp(−1

2
z2) · σ =

1√
2π

exp(−1
2
z2), i.e. N(0, 1).

(b) (i) For a Poisson distribution with mean 2:

r = 0 1 2 3 4 5
ρ(r) = 0.1353 0.2707 0.2707 0.1804 0.0902 0.0361 · · ·
F (r) = 0.1353 0.4060 0.6767 0.8571 0.9473 0.9834 · · ·
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For random numbers up to 0.1353, take r = 0; for 0.1354 to 0.4060 take
r = 1; for 0.4060 to 0.6767 take r = 2; etc.
The given numbers correspond to r = 1, 1, 2, 4.

(ii) Using the same “inverse cumulative distribution function” method as above,
and the tables provided, the following standard normal values are obtained:
r = −1.07,−0.42, +0.45, +1.40.

(iii) Given Z, the corresponding values of X are X = µ + σZ. Here µ = −3 and
σ = 0.5, so x = −3.53,−3.21,−2.77,−2.30.

(iv) Since χ2
(1) is the square of a N(0, 1), the following values are obtained: 1.145,

0.176, 0.203, 1.960.

8. The states of the Markov Chain are -2, -1, 0, 1, 2 since the game ends at the
“absorbing barriers” ±2.
The one-step transition matrix is

P =




1 0 0 0 0
1− θ 0 θ 0 0

0 1− θ 0 θ 0
0 0 1− θ 0 θ

0 0 0 0 1




The two-step matrix is

P 2 =




1 0 0 0 0
1− θ θ(1− θ) 0 θ2 0

(1− θ)2 0 2θ(1− θ) 0 θ2

0 (1− θ)2 0 θ(1− θ) θ

0 0 0 0 1




The initial state is X0 = 0, since the scores after the sixth point are equal.
So X2m must be either -2, 0 or +2. From the third column of P 2,

P (X2m = 0) = 2θ(1− θ)P (X2(m−1) = 0) · · · · · · (1)

From the fifth column of P 2,

P (X2m = 2) = θ2P (X2(m−1) = 0) + P (X2(m−1) = 2) · · · · · · (2)

As X0 = 0, (1) gives P (X2m = 0) = {2θ(1− θ)}m.

From (2), P (X2 = 2) = θ2; P (X4 = 2) = θ22θ(1− θ) + θ2; · · ·
P (X2m = 2) = θ2

{
(2θ(1− θ))m−1 + · · ·+ (2θ(1− θ)) + 1

}
.
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which is a geometric series. Its limiting sum is

θ2/(1− 2θ(1− θ)) =
θ2

1− 2θ + 2θ2
=

θ2

θ2 + (1− θ)2
.
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Statistical Theory & Methods II

1. If a random variable X has probability density (or mass) function f(x; θ) where

θ = (θ1, θ2, · · · , θk) then the jth-population moment of X is µj(θ) = E[Xj ],
j = 1, 2, · · · as long as the expectation exists. Suppose that (x1, x2, · · · , xn)

is a random sample from X. Then the jth sample moment is mj = 1
n

n∑

i=1

Xj
i

for j = 1, 2, · · ·. The method of moments estimator is given by solving the
equations µj(θ) = mj for j = 1, 2, · · · , k.

(i) µ1 = E[X] =
∫ ∞

0

5xθ5

(x + θ)6
dx = θ5

{[ −x

(x + θ)5

]∞

0

+
∫ ∞

0

dx

(x + θ)5

}

i.e. µ1 = θ5
[ −1
4(x + θ)4

]∞

0

= θ/4.

Also m1 = x̄. So x̄ =
1
4
θ̂, or θ̂ = 4x̄.

(ii) E[θ̂] = 4E[x̄] = 4
nE[

n∑

i=1

xi] =
4
n
· n · θ

4
= θ.

V (θ̂) = 16V (x̄) =
16
n

V (x), which is
16
n

[E(x2)− {E(x)}2].

E[x2] =
∫ ∞

0

5x2θ5

(x + θ)5
dx = θ5

{[
−x2

(x + θ)5

]∞

0

+
∫ ∞

0

2xdx

(x + θ)5

}

=
1
2
θ5

{[ −x

(x + θ)4

]∞

0

+
∫ ∞

0

dx

(x + θ)4

}

=
1
2
θ5

{[ −1
3(x + θ)3

]∞

0

}
= θ2/6.

V [X] =
θ2

6
− θ2

16
=

5θ2

48
; so V [θ̂] =

16
n
· 5θ2

48
=

5θ2

3n
.

Since V (θ̂) → 0 as n →∞, θ̂ is consistent for θ.

(iii) lnL = n ln 5 + 5n ln θ − 6
n∑

i=1

ln(xi + θ), [θ > 0]

d

dθ
(lnL) =

5n

θ
− 6

n∑

i=1

1
xi + θ

, and

d2

dθ2
(lnL) =

−5n

θ2
+ 6

n∑

i=1

1
(xi + θ)2

.

The Cramèr-Rao lower bound is −1/E[
d2(lnL)

dθ2
]

−E[
d2

dθ2
(lnL)] =

5n

θ2
− 6

n∑

i=1

E

[
1

(xi + θ)2

]
.
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Now E[
1

(x + θ)2
] =

5θ5dx

(x + θ)8
=

[
−5θ5

7(x + θ)7

]∞

0

=
5

7θ2
.

Hence −E[
d2

dθ2
(lnL)] =

5n

θ2
− 30n

7θ2
=

5n

7θ2
and so the lower bound is 7θ2/5n.

The efficiency of θ̂ is therefore
7θ2

5n
/

3n

5θ2
=

21
25

.

2. Let Xi be the number of different plant species in area i (i = 1 to 150). Note

that
150∑

i=1

xi = 4× 150 = 600.

(i) L(α) =
150∏

i=1

−1
ln(1− α)

αxi

xi
= {− ln(1− α)}−150 α600

∏150
i=1 xi

, 0 < α < 1;

so ln L = −150 ln(− ln(1− α)) + 600 lnα−
150∑

i=1

ln xi.

d

dα
(lnL) =

150
(1− α ln(1− α))

+
600
α

. Hence if the appropriate regularity con-

ditions are satisfied, the m.l. estimate α̂ satisfies
150

(1− α̂) ln(1− α̂)
+

600
α̂

= 0.

(ii) To solve
d

dα
(lnL) = 0 by the Newton-Raphson method, we shall require

d2

dα2
(lnL); this is

150
(1− α)2 {ln(1− α)}2 +

150
(1− α)2 ln(1− α)

− 600
α2

=
150(1 + ln(1− α))

(1− α)2 {ln(1− α)}2 −
600
α2

.

The iterative algorithm uses αn+1 = αn −
d

dα(lnL) |α=αn

d2

dα2 (lnL) |α=αn

where the derivatives are evaluated at αn, the nth approximation to α̂ by the
iterative method. Plotting L(α) against α could provide an initial value, α0.

(iii) E[X] =
∞∑

k=1

−αk

ln(1− α)
=

1
ln(1− α)

∞∑

k=1

αk = − α

(1− α) ln(1− α)
.

E[− d2

dα2
(lnL)] =

−150 {1 + ln(1− α)}
(1− α)2 {ln(1− α)}2 +

150
α2

× 4; but we are given E[X] =

10



4 and therefore the second term may be written as
150
α2

(
−α

(1− α) ln(1− α)
).

Thus E[− d2

dα2
(lnL)] =

−150− 150 ln(1− α)
(1− α)2(ln(1− α))2

− 150
α(1− α) ln(1− α)

=
−150α− 150α ln(1− α)− 150(1− α) ln(1− α)

α(1− α)2(ln(1− α))2

=
−150 {α + ln(1− α)}
α(1− α)2 {ln(1− α)}2 .

When α̂ = 0.9, this is
−150(0.9− 2.3026)
(0.9)(0.01)(2.3026)2

=
210.39
4.7818

= 4409.01.

The asymptotic distribution of α̂ is therefore N(0.9; 1/4409.01).
The 99% confidence interval for α is approximately

0.9± 2.576
√

1
4409.01 = 0.9± 0.039

= 0.86 to 0.94 approx.

3. (i) We wish to test H0 : µ1 = µ2 = · · · = µm against H1 : µk 6= µl for at least
one pair (k, l). Under H1,

L(µ1, · · · , µm) =
m∏

i=1

n∏

j=1

(2πσ2)−1/2 exp
{
− 1

2σ2
(xij − µi)2

}

= (2πσ2)−
1
2
mn exp



−

1
2σ2

m∑

i=1

n∑

j=1

(xij − µi)2




for−∞ < µi < −∞; i = 1, 2, · · · ,m

Hence lnL(µ) = −1
2
mn ln(2πσ2)− 1

2σ2
− 1

2σ2

m∑

i=1

n∑

j=1

(xij − µi)2

and
d

dµi
(lnL) =

−1
2σ2

(−2)
n∑

j=1

(xij − µi) for i = 1, 2, · · · ,m.

d

dµi
(lnL) = 0 gives µ̂i =

1
n

n∑

j=1

xij = x̄i for i = 1, 2, · · · , m.

Under H0, lnL = −1
2
mn ln(2πσ2)− 1

2σ2

m∑

i=1

n∑

j=1

(xij − µ)2

so
d

dµ
(lnL) =

1
σ2

m∑

i=1

n∑

j=1

(xij − µ), which is 0 when µ̂ =
1

mn

m∑

i=1

n∑

j=1

xij = x̄.
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The likelihood ratio test statistic is

Λ(x) =

(2πσ2)−
1
2 mn exp



− 1

2σ2

m∑

i=1

n∑

j=1

(xij − x̄)2




(2πσ2)−
1
2 mn exp



− 1

2σ2

m∑

i=1

n∑

j=1

(xij − x̄i)2




= exp(− 1
2σ2





m∑

i=1

n∑

j=1

(xij − x̄)2 − (xij − x̄i)2


)

(ii) The critical region is C : {x such that Λ(x) ≤ k} for some k.
Thus C is the values of x satisfying

m∑

i=1

n∑

j=1

{
(xij − x̄)2 − (xij − x̄i)2

}
≥ k

′

(where k
′
= −2σ2 ln k). Using the given relation,

m∑

i=1

n∑

j=1

(xij − x̄i)2 =
m∑

i=1

n∑

j=1

(xij − x̄)2 +
m∑

i=1

n∑

j=1

(x̄i − x̄)2 − 2
m∑

i=1

n∑

j=1

(xij − x̄)(x̄i − x̄)

=
m∑

i=1

n∑

j=1

(xij − x̄)2 + n
m∑

i=1

(x̄i − x̄)2 − 2n
m∑

i=1

(x̄i − x̄)2

=
m∑

i=1

n∑

j=1

(xij − x̄)2 − n
m∑

i=1

(x̄i − x̄)2.

Therefore the region for C is

{
x :

m∑

i=1

(x̄i − x̄)2 ≥ k
′′
}

where k
′′

= k
′
/n.

(iii) When H0 is true, X̄i ∼ N(µ, σ2/n) for i = 1, 2, · · · ,m.

So
m∑

i=1

(x̄i − x̄)2/(σ2/n) is distributed as χ2
(m−1) on H0.

A test of size α will reject H0 if
m∑

i=1

(x̄i − x̄)2 ≥ σ2

n
χ2

(m−1,α)

where the upper α% point of χ2 is used.

When α = 0.05,m = 3, n = 7, σ2 = 30 and
m∑

i=1

(x̄i − x̄)2 = 112, the critical

value in the test is 30
7 × 5.99 = 25.67, and 112 is much greater than this.

Hence the evidence against H0 is significant at (more than) the 5% level.

4. (i) The prior distribution of p is Π(p) = 1, 0 < p < 1. Let X be the number
of seeds out of L.S. that germinate. Then X|p is binomial (45, p); hence the

12



posterior distribution of p is

Π(p|X = 25) ∝ 1× ( 45

25
)p25(1− p)20

∝ p25(1− p)20 0 < p < 1.

Thus p|X = 25 is Beta(26, 21), so that

Π(p|X = 25) =
T
′
(47)

T ′(26)T ′(21)
p25(1− p)20, 0 < p < 1.

(ii) ln {Π(p|X = 25)} = const + 25 ln p + 20 ln(1− p)

and
d

dp
(lnΠ) =

25
p
− 20

1− p
;

d2

dp2
(lnΠ) = −25

p2
− 20

(1− p)2
< 0.

The mode is at 0 = 25
p − 20

1−p (and is a maximum)

i.e. 25(1− p) = 20p or 25 = 45p, so p̂ = 25
45 = 5

9 .
If we consider the highest probability of being close to the true value, we
could use the mode as a Bayes estimator of p.

(iii) With quadratic loss, the Bayes estimator of p is the expected value of p in
the posterior distribution.

E[p|X = 25] =
∫ 1

0

T
′
(47)

T ′(26)T ′(21)
p26(1− p)20dp

=

{∫ 1

0

T
′
(48)

T ′(27)T ′(21)
p26(1− p)20dp

}
× T

′
(47)

T ′ (48)
· T

′
(27)

T ′ (26)

=
26
47

since the integral {} = 1.

(iv) The variance in the posterior distribution is required.

E[p2|X = 25] =
T
′
(47)

T ′(26)T ′(21)
p27(1− p)20dp

=
T
′
(47)

T ′(49)
· T

′
(28)

T ′(26)

∫ 1

0

T
′
(49)

T ′(28)T ′(21)
p26(1− p)20dp

=
27× 26
48× 47

;

Hence V [p|X = 25] =
27× 26
48× 47

− (
26
47

)2 =
546

48× 472
.

So that an approximate 95% Bayesian confidence interval for p is given by
26
47
± 1.96 · 1

47

√
546
48

= 0.55± 0.14 i.e. 0.41 to 0.69.

5. If X denotes a random sample of observations, from a distribution with
unknown parameter θ, in a parameter space H, then any subset Sx of H,
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depending on X and such that P (X : Sx ⊃ θ) = 1 − α, is a 100(1 − α)%
confidence set for θ. (Thus a confidence interval is a special case)

(i) The distribution function of Y is

FY (y) = P (Y ≤ y) = P (max(xi) ≤ y) = P (x1, x2, · · · , xn ≤ y)

=
n∏

i=1

P (xi ≤ y) by independence = (
y

θ
)n, 0 < y < ∞.

So the p.d.f. of Y is fY (y) =
nyn−1

θn
, 0 < y < θ.

(ii) Let W = Y/θ. Then FW (w) = P (W ≤ w) = P (Y ≤ wθ) = FY (wθ), so that

the p.d.f. of W is fW (w) = θfY (wθ) = nwn−1, 0 < w < 1. Now Y/θ is a
function of θ whose distribution does not depend on θ, i.e., it is a pivotal
quantity.

(iii) Using this pivotal quantity, a family of 100(1− α)% confidence intervals for
θ is {θ : R1 < Y/θ < R2} where R1, R2 satisfy P (R1 < W < R2) = 1 − α

(for 0 < α < 1).

(iv) Because fw(w) = nwn−1(0 < w < 1), the shortest 100(1 − α)% confidence
interval will have R2 = 1; thus R1 must satisfy

P (W > R1) = 1− α, i.e.,
∫ 1

R1

nwn−1dw = 1− α

or [wn]1R1
= 1− α, so that 1−Rn

1 = 1− α or Rn
1 = α.

Thus R1 = α1/n.

Hence, the shortest 100(1− α)% confidence interval for θ is (Y, Y α−1/n), of

length Y (α−1/n − 1).

6. Suppose that X1, X2, · · · , Xn is a random sample from a symmetric distribution
with median M . Then, Wilcoxon’s signed ranks test can be used to test the
Null Hypothesis H0 : M = m0 against the Alternative H1 : M 6= m0, where
m0 is a given value.
Let Di = Xi − m0(i = 1, 2, · · · , n). Arrange {Di} in increasing order of
absolute magnitude, and then allocate ranks 1, 2, · · · , n according to the order
of the Di’s. When there are tied ranks, use an average rank for all the
tied D’s. Let R− and R+ denote the sums of the negative and positive
Di’s respectively, and let T = min(R−, R+). On H0, there are 2n possible
sequences of positive and negative signs associated with the ranks, all of
which are equally likely. Suppose T = t is observed; its one-sided significance
= P (T ≤ t|H0), which is the number of ways in which T can be ≤ t, divided
by 2n. This can be found by direct enumeration. For a 2-sided A.H. the
probability is doubled. The values in Table XVII are the largest values of w
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such that P (T < w) under H0 is less than or equal to the given value of p.
The difference Di between the two consumption rates for bird i (i = 1 to 8)
gives the ordering:

D −0.1 0.1 0.1 0.1 0.2 0.2 0.5 0.5
Rank 21

2 21
2 21

2 21
2 51

2 51
2 71

2 71
2 ,

where the first four share positions 1, 2, 3, 4 so have average rank 1
4(1 + 2 +

3 + 4); R− = 2.5, R+ = 33.5, so T = 2.5.
Table XVII gives the critical region at 5% for a 2-sided alternative as T < 4,
and at 2% as T < 2. So there is evidence against H0 at 5%, though not at
2%; we should reject the Null Hypothesis at the 5% level.

7 The size of a test is the probability of rejecting the N.H. when it is correct.
Suppose that we wish to test H0 : θ = θ0 against H1 : θ = θ1, and the
likelihood function is L(θ). The Neyman-Pearson lemma states that the test
with critical region of the form

C =
{

x :
L(θi)
L(θ1)

≤ k

}
,

k chosen to make the test of size α, has the highest power among all tests of
size ≤ α.

(i). H0 is “θ = θ0”, H1 is “θ = θ1 > θ0”,

L(θ) =
n∏

i=1

1
θxi

√
2π

exp
{
−1

2
(
ln xi

θ
)2

}
=

exp

{
−1

2

n∑

i=1

(
ln xi

θ
)2

}

(2π)n/2θn
n∏

i=1

xi

, θ > 0.

The likelihood ratio is

λ =
L(θi)
L(θ1)

= (
θ1

θ0
)n exp

{
−1

2
(

1
θ2
0

− 1
θ2
1

)
∑

(ln(xi))2
}

,

and so the most powerful test is the likelihood ratio test with critical region
C = {x : λ ≤ k} for some k; that is,

C =

{
x :

n∑

i=1

{ln(xi)}2 ≥ k
′
}

,

where k
′
= − 2θ2

0θ
2
1

(θ2
1 − θ2

0)
ln

{
(
θ0

θ1
)nk

}
. Thus the test depends on

n∑

i=1

{ln(xi)}2.
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(ii). The distribution function of Y = (ln X)/θ is

FY (y) = P (Y ≤ y) = P ((lnX)/θ ≤ y) = P (X ≤ eθy) = FX(eθy).

So that p.d.f. is fY (y) = θeθyfX(eθy) = 1√
2π

e−
1
2
y2

, −∞ < y < ∞,

which is N(0, 1). Therefore Y 2 = χ2
(1) and by the independence of X1, X2, · · · , Xn

we have

n∑

i=1

[ln(xi)]2

θ2
∼ χ2

(n).

(iii). On H0,
25∑

i=1

[ln(xi)]2 ∼ χ2
(25), and so the test of size 0.05 rejects H0 if

25∑

i=1

[ln(xi)]2 ≥ 37.65.

(iv). On H1,
1
3

25∑

i=1

[ln(xi)]2 ∼ χ2
(25) and the power of this test therefore is

P [
25∑

i=1

[ln(xi)]2 ≥ 37.65|θ = 3] = P [
1
3

25∑

i=1

[ln(xi)]2 ≥ 12.55|θ = 3] = 0.98.

8. The Central Limit Theorem allows large samples of data to be studied as if
they were normal, by examining either the mean or the total in the sample.
If a distribution has mean µ and variance σ2, then as sample sign n →∞ the
distribution of the sample mean becomes approximately N(µ, σ2/n), and of

the sample total N(nµ, nσ2). Therefore in large samples of data the CLT
allows tests based on normal theory to be made and confidence intervals to
be calculated, for means or totals.
The size of n required for this to be satisfactory depends on how skew the
original distribution is; when it is not very skew n need not be very large.
So in relatively small samples from distributions that are not very skew the
CLT allows us to carry out the standard methods and regard them as robust.
In experimental design, normality is an assumption for the Analysis of Vari-
ance. Although samples are usually small, they may be based on records
which themselves are the sum of many components, e.g. crop weights from
plots each of a large number of plants. The CLT justifies assuming (approx-
imate) normality for many items of biological data.
Statistical Tables, especially for the t-test and for many nonparametric tests,
need only be constructed for fairly small sample sizes because the normal
approximations for these statistics are good for quite small samples; the rel-
evant theory behind the derivation of the functions involved is subject to the
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CLT mathematically. The same is true for the correlation coefficient.
It is also possible to give normal approximations to the Poisson and Bino-
mial distributions when their parameters satisfy certain conditions; the same
operation of the CLT applies. So again special tables are required only for
cases where the approximations do not apply adequately.
Asymptotic results for large samples apply to maximum likelihood estima-
tors; besides distribution theory that allows confidence intervals to be cal-
culated using normal theory the asymptotic variance is the basis (by the
Crawer-Rao bound) for assessing efficiency if other estimators.
The asymptotic distribution of lnλ, where λ is the generalized likelihood
ratio test statistic, under H0 uses the CLT to support its proof; so also does
the asymptotic theory for a posterior distribution.
Theoretical ways of examining approximations are to look at third and fourth
moments of samples of data, or do a Monte Carlo study, or see whether the
log likelihood function is quadratic. Practical ways are to construct (with
the aid of suitable programs) dot-plots, histograms or box-and-whisker plots.
Computer analysis can sometimes be done with and without transformation
and the results compared. Residuals from fitted models may also be useful.
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Applied Statistics I

1. (i). We are studying percentages, almost all of whose values are outside
the range 20-80. ‘Extreme’ percentages do not have a variance that is even
approximately constant and an inverse sine transformation greatly improves
the validity of this assumption. The numbers upon which each percentage
is based should be the same.

(ii). The factors are T = type of school (B/M/G); A = area (S/M/N),

∑
x S M N TOTAL

∑
x2 TOTAL

B 6.4370 6.7945 5.7455 18.9770 69.1353
M 6.0050 5.6910 6.1630 17.8590
G 5.3745 6.5455 6.5700 18.4900 N = 45

TOTAL 17.8165 19.0310 18.4785 55.3260

Total sum of squares (corrected) = 69.1353− 55.32602/45 = 1.11383

Area S.S. = 1
15(17.81652 + 19.03102 + 18.47852)− 55.32602

45 = 0.04930.

Type S.S. = 1
15(18.97702 + 17.85902 + 18.49002)− 55.32602

45 = 0.04190.

Area+Type+(Area × Type)= 1
5(6.43702+6.79452+· · ·+6.54552+6.57002)−

55.32602

45 = 0.36548.
Analysis of Variance

SOURCE D.F. S.S. M.S.

Type 2 0.04190 0.0210 f = 1n.s.

Area 2 0.04930 0.0247 F(2,36) = 1.19n.s.

Type×Area 4 0.27428 0.0686 F(4,36) = 3.30∗

A + T + (A× T ) 8 0.36548
Residual 36 0.74835 0.0208 = σ̂2.

TOTAL 44 1.11383

There is evidence of interaction between area and type of school. (see next
page)

2. (i) f(x) = 1
x , f

′
(x) = − 1

x2 . Hence E[ 1
x ] = f(µ) = 1

µ .

V [ 1
x ] = σ2(− 1

µ2 )2 = σ2/µ4. (Taylor Series Approximation).

(ii) The population consists of N animals, of whom m are marked. There are

( N

n
) ways of selecting n from the whole population. The x marked ones can

be selected from m in ( m

x
) ways and the (n− x) unmarked from (N −m)
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in ( N −m

n− x
) ways.

The probability that X = x is the proportion (no of ways of making selection
of (x, n − x))÷(total no of ways of selecting n), and the numerator is the

product of the expressions ( m

x
) and ( N −m

n− x
). Hence

P (X = x) =
(

m

x
)(

N −m

n− x
)

(
N

n
)

,
for max(0, n−N + m) ≤ x ≤ min(n,m)
since x can only take values in this range.

(iii) If we assume that the proportions marked in sample and population are the

same,
x

n
=

m

N
, i.e. N̂ =

mn

x
.

Using this estimator, E[N̂ ] = mnE

[
1
x

]
=

mn

µ
=

mn
mn
N

= N to first order,

since E[x] =
mn

N
in the hypergeometric distribution.

With the given expression for variance (σ2),

V ar[N̂ ] = (mn)2V
[
1
x

]
= m2n2σ2/µ4 = m2n2 · mn(N −m)(N − n)

N2(N − 1)
· N4

n4m4

=
(N −m)(N − n)N2

(N − 1)mn
,

which to first approximation may be taken as (N −m)(N − n)N/mn.

(iv) N̂ =
(100)2

20
= 500. V [N̂ ] =

(N̂ − 100)(N̂ − 100)(500)
(100)(100)

= (
400
100

)2(500) = 8000.

Using a normal approximation, the 95% confidence interval for N is N̂ ±
1.96

√
V (N̂) = 500± 1.96

√
8000 = 500± 175 or (325; 675).

3. (i) The matrix that has to be inverted can be near-singular. The estimates of
coefficients become unstable and the variances large. It is difficult to select
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a subset from the whole.
Some of the most highly correlated variables can be omitted. Otherwise
principal component regression or ridge regression may be used.

(ii). With x1 in the model, x2
1 alone is not worth adding. But including x2

and x3 with x1 makes a big improvements, increasing the regression S.S. by
35232− 2847 = 32385. (a) : SS = 2847; and (b) : SS = 35232.
Different slopes and intercepts is (c) : SS = 35517.
The simplest appropriate model is (b), with different intercepts.
Compare it with (c):

SOURCE OF VARIATION D.F. S.S. M.S.

Intercepts only 3 35232
Slopes as well as intercepts 2 285 142.5 F(2,21) = 19.18∗∗∗

Slopes and Intercepts 5 35517
Residual 21 156 7.43
TOTAL 26 35673

However, there is a considerable improvement by including slopes also. Con-
sider (d) : S.S. = 35669. The increase in S.S. of curvature over linear-
ity is 35669-35517=152, with 3d.f.; the corresponding M.S. is 50.667 and
residual now is 156-152=4 with 21-3=18 d.f. The new residual M.S. is
4/18 = 0.222, and the improvement by including curvature is shown by

F(3,18) = 50.667
0.222 = 228∗∗∗, apparently a very great improvement.

But for (c), already R2 = 35517
35673 = 99.6%, so there is not a very great need

for improvement. With adequate residual d.f., as here, quadratic terms can
be included; but if d.f. were less it might be best to omit them.
Other useful information would include the raw data, some graphical plots
of them, some standard diagnostic methods, the view of the engineer as to
whether the quadratic terms are worth including, and any previous work on
similar problems. Different intercepts in (b) can be examined by the model
including x1x2 and x1x3.

4. (i) The Gauss-Markov Theorem for simple linear regression says that if

yi = α + βxi + εi(i = 1, · · · , n), E[εi] = 0, V ar[εi] = σ2, all εi, εj uncorre-
lated then the least squares estimators of α and β are best linear unbiased
estimators.
For the general linear model (“multiple regression”) with the same conditions

on {εi : i = 1 to n}, i.e., E[ε] = 0 and E[εεT ] = σ2I, then in Y = Xβ + ε,

the least squares estimate β̂ = (XT X)−1
XT y gives the best linear unbiased

estimate of β = (β1, β2, · · ·)T .
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These “best” estimators are minimum variance.
Hence least-squares provides estimates that are both unbiased and of min-
imum variance. In the case where {εi} follow normal distributions we also
have maximum likelihood estimators by this method.

(ii). (a) If Y = Xβ + ε, the least-squares estimator is the solution of
d

dβ
(Y −Xβ)T (Y −Xβ) =

d

dβ
εT ε = 0, i.e.

d

dβ
(Y T Y − βT XT Y − Y T Xβ + βT XT Xβ) = 0,

or
d

dβ
(Y T Y − 2βT XT Y + βT XT Xβ) = 0.

Hence XT Y = XT Xβ̂, so that β̂ = (XT X)−1(XT Y ).

E[β̂] = E[(XT X)−1(XT Y )] = E[(XT X)−1
XT (Xβ + ε)]

= β + E[(XT X)−1
XT ε] = β since E[ε] = 0.

V [β̂] = V [(XT X)−1(XT Y )] = (XT X)−1
XT V [Y ]X(XT X)−1

= (XT X)−1
σ2 since V [Y ] = V [ε] = σ2I.

(b).

β̂ =




0.690129 −0.083363 −0.002234
−0.083363 0.056302 0.000023
−0.002234 0.000023 0.000009







604
791

146578




=




23.4425
−2.4451
−0.0119




V (β0) = 0.690129σ̂2. We require the regression analysis of variance to esti-

mate σ2.

The regression S.S. is [XT Y ]T β̂ = [604 791 146578]




23.4425
−2.4451
−0.0119


 = 10481

and the residual S.S. is 11194 - 10481 =713. This has (n − 3) = 47d.f. so
the residual M.S. is 713/47 = 15.17.
Hence V (β0) = 0.690129 × 15.17 = 10.469 and the 95% confidence interval
is

23.4425± t(47)

√
10.469 = 23.4425± 2.01× 3.236

= 23.4425± 6.5036
i.e.(16.94 to 29.95).
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The S.S. with β0 only is 6042/50 = 7296, so a full analysis of variance is:

SOURCE D.F. S.S.

β0 1 7296
β1, β2 after β0 2 3185 1592.5 F(2,47) = 105∗∗∗

Residual 47 713 15.17
50 11194

There is very strong evidence against the NH “β1 = β2 = 0”.

5. (i) Conditions Ci(i = 1, 2) is a “fixed” effect; batches are randomly selected

from a wider population, and so will have a variance σ2
b . The residual {εijk}

terms are independently distributed as N(0, σ2); µ is a general mean potency

response, so batches may be assumed N(0, σ2
b ).

(ii) The degrees of freedom for the items in the analysis are respectively 1, 4, 18;
total 23.
We require

∑

i

∑

j

∑

k

(yij· − yi··)2 = S

yij· − yi·· = µ + Ci + bj(i) + εij· − µ− Ci − t0(i)− εi··
= (bj(i)− b·(i)) + (εij· − εi··)

Now
∑

i

∑

j

∑

k

(bj(i)− b·(i))(εij· − εi··) = 0, since b and ε are independent.

Thus

S =
∑

i

∑

j

∑

k

(bj(i)− b·(i))2 +
∑

i

∑

j

∑

k

(εij· − εi··)2

= 4
∑

i

∑

j

(bj(i)− b·(i))2 + 4
∑

i

∑

j

(εij· − εi··)2

and E[S] = 4 · 2 · 2σ2
b + 4 · 2 · 2σ2/4 = 16σ2

b + 4σ2

so that the expected mean square is 4σ2
b + σ2.

The S.S. between conditions is T 2
A

12 + T 2
B

12 − G2

24

= 1
12(3212 + 1502)− 4712

24 = 10461.75− 9243.375 = 1218.375.
The complete analysis of variance is

SOURCE D.F. S.S. M.S. Fratio

Between conditions 1 1218.375 1218.375 F(1,4) = 15.75∗

Within conditions between batches 4 309.500 77.375 13.96∗∗∗

Within batches 18 99.750 5.542 = σ̂2

TOTAL 23 1627.625
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Conditions A lead to significantly higher potency than B (the significance is
only at 5% because there are very few d.f. for the test - F(1,4)). The variation

between batch potencies is very highly significant (F(4,18)). The first test has

N.H., “C1 = C2” and the second has N.H., “σ2
b = 0”. The estimate of σ2

b

is estimated as 1
4(77.375− 5.542) = 17.96, much larger than σ2, ĈA − ĈB is

estimated as 1
12(321− 150) = 14.25.

6. (i) Suppose that {Yt} is a purely random process with mean 0 and variance

σ2. Then {Xt} is MA(q) if

Xt = β0Yt + β1Yt−1 + · · ·βqYt−q.

Also, Ut is AR(p) if Ut = α1Ut−1 + · · ·+ αpUt−p + Yt.

(ii) Xt = at + θ1at−1 + θ2at−2

(a)

E[XtXt] = E[(at + θ1at−1 + θ2at−2)2] = E[a2
t ] + θ2

1E[a2
t−1] + θ2

2E[a2
t−2]

= σ2(1 + θ2
1 + θ2

2) since {at} are independent.

E[XtXt−k] = E[(at + θ1at−1 + θ2at−2)(at−k + θ1at−k−1 + θ2at−k−2)].

When k = 1, E[Xtxt−1] = (θ1 + θ1θ2)σ2 = θ1(1 + θ2)σ2 by independence
and for k = 2, E[XtXt−2] = θ2σ2, all other terms being 0.
For k ≥ 3, E[XtXt−k] = 0.

Therefore ρ1 =
θ1(1 + θ2)
1 + θ2

1 + θ2
2

and ρ2 =
θ2

1 + θ2
1 + θ2

2

; also ρk = 0 for k ≥ 3.

(b) Zt = 1
2(Xt + Xt−1), so V [Zt] = 1

4V [Xt + Xt−1].
Hence

V [Zt] = 1
4 [V [Xt] + 2Cov[Xt, Xt−1] + V [Xt−1]]

= 1
2σ2(1 + θ2

1 + θ2
2 + θ1(1 + θ2))

∂V

∂θ1
=

1
2
σ2(2θ1 + 1 + θ2) and

∂V

∂θ2
=

1
2
σ2(2θ2 + θ1).

Setting these to 0, we have 2θ1 + 1 + θ2 = 0 and 2θ2 + θ1 = 0;
therefore θ1 = −2θ2 and so −4θ2 + 1 + θ2 = 0 or θ2 = 1/3. This gives
θ1 = −2/3.

7. (i) (a) The first principal component of the set of observations X =




x11 · · · x1p

...
...

xn1 · · · xnp


,

with p measurements on each of n units from a population is that linear
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combination Y1 = a11X1 + a12X2 + · · · ap1Xp = a
′
1X whose sample variance

a
′
1

∑
a1 is greatest among all possible vectors a1 satisfying a

′
1a1 = 1.

The second Y2 = a12X1 + a12X1 + · · · + a12X1 = a
′
2x is orthogonal to the

first component and has the greatest possible variance subject to this, i.e.

satisfies a
′
2a2 = 1 and a

′
1a2 = 0.

When these are based on a variance-covariance matrix, the scales in which
the x-variables are measured is important, but this is corrected for by using
a correlation matrix. The variance-covariance matrix has a simple sampling
distribution, but the components may be dominated by large measurements.
The correlation matrix gives equal weight to all variables and provides linear
combinations of scale free measurements.

(b) Principal components analysis can check the dimensionality of the data - do
we really need p measurements to explain them or can fewer linear combi-
nations be used, for example as the predictors in a regression analysis?
The transformation to orthogonal (uncorrelated) components can also be
useful; and clusters of points, or outliers, can be examined.
The components with the smallest variances can also be helpful in identify-
ing measurements which need not be taken in future.

(ii) Since there are 5 measured variables, the eigenvalues will add to 5. The first
three contribute very nearly all of this; and in fact the first two contribute
80%. Therefore the dimensionality is not more than 3 and could perhaps be
taken as 2. The five given x’s would be expected to be quite highly corre-
lated.
PC1 is a linear combination of all five, perhaps a “wealth index ” but when
the correlation matrix is used the first component is quite often of this sort.
PC2 is a contrast between (x2, x3) and (x4, x5); there is no obvious interpre-
tation but it might be useful to plot the value of this contrast against PC1
for the set of observed units.
PC3, if used, gives a contrast between the first and second incomes.

8. A generalized linear model requires (1) a link function, (2) a linear predictor,
(3) an error distribution.
Given a set of observation y1, y2, · · · , yn from a distribution having density
function f(yi, ηi, φ), which is in the exponential family and includes normal,

binomial, gamma and Poisson; ηi =
p∑

j=1

βjxji, the linear predictor, and ηi =

E(yi) in the simplest cases but need not be so in general. The link function
relates ηij to the mean µij , and in the contingency table model given the

24



linking function is log µij , or log λijk in this particular example. The right
hand side is the linear predictor. The error distribution assumed is Poisson.

(ii) The levels of variables required are i = 1, j = 0, k = 1, so that R1 = −0.011;
E0 = +0.104; I1 = +0.011; (RE)10 = −0.284; (RI)11 = +0.348; (EI)01 =
+0.021, giving

loge λ101 = +2.953− 0.011 + 0.104− 0.284 + 0.345 + 0.021
= 3.142 and so λ101 = 23.15.

(iii) Fitting the main effects and (EI) does not reduce the deviance significantly

(χ2
1 = 34.94−31.96 = 2.98n.s.). Beginning with µ,R, E, I we may add (RE)

or (RI); the first of these reduces the deviance by 12.40, the second by 18.82,
both significant at 0.1%. Adding (RE) after (RI) reduces the deviance by
14.00-1.60 =12.40, again very highly significant. with µ, R, E, I, (RE), (RI)
we have a small deviance that will not be improved by the 3-factor term.
We need all these 6 terms in a model that explains the data satisfactorily.
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Applied Statistics II

1. (i) The total (corrected) sum of squares in the analysis of variance is 8988−
7402

64 = 431.75, treatment S.S.=
∑ T 2

i
8 − G2

N = 1
8(69196) − 7402

64 = 93.25

(batches); panel S.S.= 69066
8 − 7402

64 = 77.00.

SOURCE D.F. S.S. M.S.

Replicates(Panels) 7 77.00 11.000 F(7,49) = 2.06 n.s.

Treatments(Batches) 7 93.25 13.321 F(7,49) = 2.50∗

Residual 49 261.50 5.337
TOTAL 63 431.75

There is no evidence of systematic panel differences. We can subdivide the
“treatments” into single degrees of freedom.

“Treatment” (1) a b ab c ac bc abc

Total 78 97 88 108 81 97 89 102 Value Value2

64 F(1,49)

A − + − + − + − + 68 72.25 13.54∗∗

B − − + + − − + + 34 18.06 3.38 n.s.

AB + − − + + − − + −2 0.06 < 1
C − − − − + + + + −2 0.06 < 1

AC + − + − − + − + −10 1.56 < 1
BC + + − − − − + + −8 1.00 < 1

ABC − + + − + − − + −4 0.25 < 1

Only A(pan material)has a significant effect: “high level”, i.e. aluminium,
being better than glass. The only other effect worth any further experimen-
tation would be B(stirring).

(ii) There is only one mix per recipe, and there is no true replication as the 8
samples from it are unlikely to be “independent”. Also these scores may not
be even approximately normally distributed.

(iii) The “effects” of each main effect and interaction can be estimated by dividing
the values in the above table by 8, and the averages of these by dividing again
by 4, since each effect is the average of four (+,-) comparisons. In fact it
does not help to reduce all these comparisons to averages because there is
no significance test that can be done on them (having no genuine residual
d.f.).

A B AB C AC BC ABC

Effect: 2.13 1.06 −0.06 −0.06 −0.31 −0.25 −0.12.
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(iv) Averages are nearer to normality than individual data. This analysis gets
round the problem of dependence among the eight ‘replicate’ ratings. For
these reasons it may be thought better than that in (i).

2. (a) If block size is strictly limited, to k, and the number of treatment to
be composed, v, is more than this, a balanced incomplete block will be
useful when comparisons between pairs of treatment means are all equally
important. Any pair of treatments occurs together the same number, λ, of
times in a block.
The total number of unit plots is N , which is equal to rv but also to bk.
Hence (N =)rv = bk.
Consider one particular treatment. It will occur together with others in a
block r(k − 1) times; but it also appears λ times with each of the other
(v − 1) treatments. Hence λ(v − 1) = r(k − 1). But λ must be an integer.

So λ = r(k−1)
v−1 is an integer.

(b) (i) v = 5 = b, r = 4 = k. N = 20. λ = 4×3
4 = 3.

(ii) G = 4348;
∑

x2 = 955360. Total S.S. = 955360− 43482

20 = 10104.8.

S.S. for batches (not adjusted for treatments)

= 1
4(8632 + 8382 + 8352 + 8012 + 9062)− 43482

20 = 704.8.

B(i) = total yield of all plots in all those blocks containing trt. i.

Treatment: A B C D E TOTAL
TOTAL 761 825 949 818 995 : 4348

B(i) 3465 3442 3485 3487 3513
Qi = kTi −B(i) −421 −142 311 −215 467
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S.S. Treatments adjusted for Batches =
∑

Q2
i /vkλ = 558440/60 = 9307.33

Analysis of Variance.

SOURCE D.F. S.S. M.S.

Batches (ignoring treatment) 4 704.80
Treatments adjusted for batches 4 9307.33 2326.8 F(4,11) = 276.2∗∗∗

Residual 11 92.67 8.425 = σ̂2

TOTAL 19 10104.80

These is very strong evidence of treatment differences. (We cannot test
batches because the above S.S. is unadjusted.)

(iii) Means are µ̂ + Qi/λv and µ̂ = G
N = 4348

20 = 217.4. Also the variance of a

difference between any pair of means is 2kσ̂2/vλ = 8
15 × 8.425 = 4.493, so

S.E. is 2.12. Also t(11,5%) = 2.201. Any pair of means differing by more than

2.12× 2.201 = 4.67 may be called significant.

Means are: A D B C E

189.33 203.07 207.93 238.13 248.53

A versus D: At 10% Cd, the addition of 10% Sn gives a significant rise in
melting point.
A versus B: Without Sn, increasing Cd from 10% to 20% does the same.
All these three are very much less than C and E.
B versus C: Without Sn, increasing Cd from 20% to 30% gives a further
significant rise in melting point.
C versus E: At 30% Cd, the addition of 10% Sn gives a significant rise in
melting point.
Summary: Each increase in Cd or in Sn raises the melting point.

3. (i) Examining the 3-factor interaction first, it provides no evidence at all
against the NH that A ∗ B ∗ C is zero. For the 2-factor interactions, in the
same way, A ∗ B and A ∗ C can be taken as zero. The F-value for B ∗ C is
very large, and on the NH “B ∗ C = 0” it has an extremely small p-value.
Therefore B and C must be studied together. However, the main effect of
A gives information and shows strong evidence for an increased yield when
nitrogen is added:

TOTAL(kg) MEAN(kg)
plots withA 4832 302.0
withoutA 4499 281.2
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We know from the p-value that these means differ at the 1% significance
level.
Two-way table B × C:

TOTALS
C low high

B low 851 2679
high 2321 3480

MEANS
C low high

B low 106.4 334.9
high 290.1 435.0

The least significant difference between two of these means is

t(24)

√
2×335.906

8 = 9.164×





2.064(5%) = 18.91
2.797(1%) = 25.63
3.745(0.1%) = 34.32

,

showing that all four means differ at 0.1%. B and C both give very large
increases when used alone, but when together the effect is exceedingly large
(4 times more yield than without either).

(ii) Random allocation provides a basis for any valid statistical test and also
gives practical help in avoiding any systematic layout that could be said to
bias results in favor of, or against, any particular treatment combination.
(If a layout looks ‘systematic’ after randomization, this is due to sampling
accident rather than deliberate choice.)

(iii) Within the available plots, allocate to them the numbers 01-32. Take pairs of
random digits, and if any of 01-32 occur they immediately locate a plot. 33-
64 have 32 subtracted, to give 01-32 again; 65-96 likewise have 64 subtracted.
00 and 97, 98, 99 are not used.
For example,, 8725037441182936555000 · · · gives
87, 25, 03, 74, 41, 18, 29, 36, 55, 50, 00, · · ·, which reduce to
23, 25, 03, 10, 09, 18, 29, 04, 23, 18, 00, · · ·
The first four of these carry treatment (1), the next four a, the next four b,
and so on, until bc; then the four remaining must carry abc.
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(If the trend had been the other way we could use two columns meet to one
another as a block.)
This is a randomized complete block design.

4. (i) Consider stratum h: the sample mean from that stratum is an unbiased
estimate of the population mean in the stratum. By taking a (0,1) random
variable as the observation, with y = 0 if the accommodation is not rented
and y = 1 if it is, suppose we obtain Ah rented in stratum h and ah in a.
Simple random sample from that stratum.

Then Ȳh =
Ah

Nh
= Ph and ȳh =

ah

nh
= ph.

Since E(ȳh) = Ȳh, it follows that E(ph) = Ph.

For the whole city, the estimated mean from a stratified sample is
L∑

h=1

Nh

N
ph ≡ pst

and

E(pst) =
∑ Nh

N
E(ph) =

∑ NhPh

N
= P.

(ii) In general, V (ȳst) =
1

N2

L∑

h=1

Nh(Nh − nh)
S2

h

nh
. When the (0,1) variable above

replaces y, S2
h =

1
Nh − 1

Nh∑

i=1

(yih − Ȳh)2 =
1

Nh − 1
(

Nh∑

i=1

y2
ih −NhȲ 2

h ). Because

y = 0 or 1, this is

1
Nh − 1

(
Nh∑

i=1

yih −NhȲ 2
h ) =

1
Nh − 1

(NhPh −NhP 2
h ) =

Nh

Nh − 1
Ph(1− Ph)

Thus V (pst) =
1

N2

L∑

h=1

N2
h(Nh − nh)
Nh − 1

PhQh

nh
, where Qh = 1− Ph.

In simple random sampling within a stratum,

E(s2
h) = E[

1
nh − 1

Nh∑

i=1

(yih − ȳh)2] = S2
h; and

s2
h

nk
=

phqh

nh − 1

by the same argument used above for S2
h.

Hence an unbiased estimator of V (pst) is as given.
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(iii)

Stratum Nh nh ph Wh = Nh/N phqh
nh−1 1− fh

< 50 1190 40 0.7500 0.5874 0.004808 0.9664
50− 100 523 35 0.5143 0.2581 0.007347 0.9331
100− 200 215 35 0.2000 0.1061 0.004706 0.8372

> 200 98 40 0.1250 0.0484 0.002804 0.5918

in which fh = nh
Nh

, the sampling fraction in stratum h.

pst =
L∑

h=1

Nh

N
ph = 0.6006 or 60.06%.

The estimate

V (pst) =
1

N2

L∑

h=1

N2
h(1− fh)

phqh

nh − 1
=

L∑

h=1

W 2
h (1− fh)

phqh

nh − 1

= 0.001603205 + 0.000456682 + 0.000044351 + 0.00388726
= 0.002108

giving a standard error of 0.0459.

(iv) A good sample allocation is nh ∝ NhSh = Nh
√

PhQh, and using the sample
estimates of Ph and

∑
nh = 150, we have the ratio 515.285: 261.393: 86.000:

32.410, so the scale factor is 150/895.088 giving 86; 44; 14; 6.
We have far too many in the third and fourth strata and only half of what
we ought to have in the first.

5. (i) The words in italics are vague, with no precise meaning that will be
understood by everyone, particularly in different age groups. No time period
is suggested: is it over a year, or a month, or in winter, summer etc.?
The second question is not capable of an answer by everyone so will cause
non-response. There are many more forms of exercise possible, and many
more sports than are listed.

(ii) How often do you exercise (including training, playing sport, “keep fit” etc)

(see next page)

(iii) Personal interviews should gain a high response rate, and ensure that the
questions are answered precisely and answers recorded properly; any misun-
derstandings can be dealt with. Interviewers must be careful not to induce
bias by stressing any answer more than others or by suggesting answers.
Telephone “interviewing” is cheaper, but people are more difficult to obtain
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and the basic sampling frame may not be good. Response may be lower, and
the questions usually must be fewer, because telephone interviewing annoys
some people and cooperation is lower.
Postal questionnaires are cheapest. Problems of people not being at home
are avoided. In a scattered area, the whole of it can be sampled, without
excessive travelling as in personal interviewing. Response rate tens to be low
initially and follow up is needed; more time must be allowed for collecting
responses. Questions need to be simple and straightforward, and prefer-
ably not very many of them. An explanatory leaflet can be useful towards
improving the quality of answers.

6. Denote the 1989 figures by y and the 1980 figures by x. Then N = 19, n = 6,
6∑

i=1

yi = 327,
6∑

i=1

xi = 245, Tx = 674 (for 1980).

Hence in the sample ȳ = 327
6 = 54.50 and x̄ = 145

6 = 40.83.

Also
6∑

i=1

y2
i = 22131,

6∑

i=1

x2
i = 11991,

6∑

i=1

xiyi = 16196.

(i) (a) Using a simple random sample of these 6 data for 1989,

Ŷ = Nȳ = 19× 54.5 = $1035.50.

(b) Ratio estimator ŶR = Tx · ȳ/x̄ = 674× 54.50
40.83 = $899.58.
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(c) ȲLR = ȳ + b(µ− x̄) where µ is the 1980 mean and

b̂ =
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

=
∑

xiyi − 1
6(

∑
xi)(

∑
yi)∑

x2
i − 1

6(
∑

xi)2
=

2843.50
1986.83

= 1.4312.

ȲLR = 54.50 + 1.4312(
674
19

− 40.83) = 54.50− 7.67 = 46.83

and ŶLR = NȳLR = $889.85.

(ii) There is a considerable difference between µ and x̄, and the SRS estimator
makes no allowance for this, which would be important assuming there is a
relation between x and y. It is clear from the six sample pairs that this is
so. We therefore gain information by using this relation.
Unless there is good reason to expect x and y to have a linear relation through
the origin, linear regression should give a better estimate than ratio. In this
case, there is little difference, but linear regression would be preferred.

(iii) Estimated V (Ŷ ) = N2(1− f)s2/n, where s2 =
1
5
(

6∑

i=1

y2
i −

(
∑

yi)2

6
) = 861.90

i.e. s = 29.358. Hence V̂ (ŷ) = 192(1− 6
19

)
861.9

6
= 35481.55, SE= 188.4.

By the ratio method, estimated variance is

V̂ (ŷR) = N2(
1− f

n
)
{
s2
y − 2Rsxy + R2s2

x

}
= 192 (1− 6

19)
6

{
861.90− 2

ȳ

x̄
sxy +

ȳ2

x̄2
s2
x

}

= 41.1667

{
861.90− 2

1.3347
5

(16196− 327× 245
6

) +
1.33472

5
(11991− 2452

6
)

}

= 41.1667(861.90− 7090 · 44
5

+
3539 · 47

5
) = 2128.57.

Using linear regression, estimated variance is

V (ŶLR) = N2(1−f
n )

{
s2
y − stsxy + t2s2

x

}
= 41.1667

{
861.90− 2× 1.4312sxy + 1.43122s2

x

}

= 41.1667(8619− 2.8624× 2843.60
5 + 1.43122 × 1986.83

5 ) = 1975.64.

Relative efficiency of ŶR to ŶLR is 1975.64
2128.57 × 100 = 92.8%.

(i.e. ŶLR to ŶR is 107.7%)
Hence linear regression is slightly more efficient.

Compared with SRS, V (ratio)

V (SRS)
= 2128.57

35481.55 = 6%, or the efficiency of SRS

relative to ratio is only 6%, so the efficiency of ratio relative to SRS is
1666.7%.
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V (LR)

V (SRS)
= 1975.64

35481.55 = 5.6%, so SRS is only 5.6% of the efficiency of LR, or

LR efficiency relative to SRS is 1796.0%.
These results are in agreement with (ii).

7. (i) A first-order model is suitable in the early part of a research programme
when the experimental region may not contain the maximum or minimum
value which is being sought; the model y = a+b1x1+b2x2 is fitted to response
values y and the gradient coefficients t1, t2 show the directions in which the
experimental values of x1, x2 should more for subsequent experiments.

An orthogonal design has a diagonal (X
′
X) matrix which leads to easy arith-

metic and independent estimates of the parameters. For a first-order model,
an orthogonal design is rotatable and gives minimum-variance estimates of
a, b1, b2. A rotatable design in general if V ar(ŷ) depends only on the distance
of the experimental point x from the design center.

(ii). (1) X =




1 −1 −1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 −1 1
1 1 1 −1
1 −1 1 1
1 1 1 1




, so that X
′
X =




8
8

0

0
8

8




and V (b) = σ2(X
′
X)−1 = σ2




1/8
1/8

0

0
1/8

1/8




where b0 ≡ a and b1, b2, b3 refer to the three experimental x-variables.
V ar(bi) = σ2/8, i = 0, 1, 2, 3.

At distance ρ from the center, ρ2 = x2
1 + x2

2 + x2
3 and

V (ŷ) = V (b0) +
3∑

i=1

x2
i V (bi) =

1
8
σ2(1 + ρ2).
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(2) X =




1 1 −1 −1
1 −1 −1 1
1 −1 1 1
1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0




, and X
′
X =




8
4

0

0
4

4




with (X
′
X)−1σ2 = σ2




1/8
1/4

0

0
1/4

1/4




so that V (b0) = σ2/8 and V (bi) = σ2/4 for i = 1, 2, 3. Hence at distance ρ

from the center, V (ŷ) =
σ2

8
+

ρ2σ2

4
=

σ2

8
(1 + 2ρ2).

(3) X =




1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1
1 1 1 1
1 1 1 1




, and X
′
X =




8
8

0

0
8

8




with (X
′
X)−1σ2 = σ2




1/8
1/8

0

0
1/8

1/8




and all V (bi) are σ2/8. Hence at distance ρ from the center, V (ŷ) =
σ2

8
(1 + ρ2).

Designs (1) and (3) are minimum-variance; design (2) is rotatable and or-
thogonal, like the others, but not minimum-variance. In fact the variance in
(2) increased quite quickly the larger ρ is.

(iii). In (1) there is no replication so no “pure error” among the 4 d.f. for residual.
But it would be suitable where it is expected that further experiments will
be needed anyway.
(2) has 3 “pure error” d.f. for testing whether linearity is adequate, and 1
d.f. for quadratic but no provision for interaction. Therefore it can be used
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if curvature is suspected but no interaction.
In (3) the residual 4 d.f. are not associated with interaction or quadratic
terms, but the coefficients in a first-order model are capable of being tested.
It is useful when quadratic or interaction effects are to be estimated, although
the adequacy of a model cannot be tested.

8. (i) ni is the number exposed to risk in the ith time interval. It is ni− 1
2(li+wi),

assuming a uniform distribution of loss within the interval.
q̂i is the conditional proportion dying; q̂i = di/ni for i = 1 to s−1 and q̂s = 1
for the fast interval s, and is an estimate of the conditional probability of
death in interval i given that the individual is exposed to risk of death in
this interval.
p̂i is the conditional proportion surviving, = 1− q̂i.

Ŝ(ti) is the cumulative proportion surviving, an estimate of the survivorship

function at time ti (“cumulative survival rate”). Ŝ(t1) = 1, and Ŝ(ti) =

p̂i−1Ŝ(ti−1) for i = 2, 3, · · · s.
(ii)(iii).

Year ti wi di n
′
i ni q̂i p̂i Ŝ(ti) ĥ(tmi)

0 0 0 456 2418 2418 0.1886 0.8114 1.0000 0.2082
1 9 30 226 1962 1942.5 0.1163 0.8837 0.8114 0.1235
2 10 12 152 1697 1686 0.0902 0.9098 0.7170 0.0945
3 0 23 171 1523 1511.5 0.1131 0.8869 0.6524 0.1199
4 9 15 135 1329 1317 0.1025 0.8975 0.5786 0.1080
5 10 97 125 1170 1116.5 0.1120 0.8880 0.5193 0.1186
6 25 108 83 938 871.5 0.0952 0.9048 0.4611 0.1000
7 15 87 74 722 671 0.1103 0.8897 0.4172 0.1167
8 8 60 51 546 512 0.0996 0.9004 0.3712 0.1048

(iv).
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This shows a reasonably smooth curve, and the median survival time (s =
0.5) is about 5.3 years.

The death rate is highest in the first year after diagnosis. After this it
fluctuates in the region of 0 : 1, so that a patient who has survived one year
has a better prognosis than at the beginning (subject to other factor such as
ages, sex, racial group).
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