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1.In a sample space S, suppose that for the events E1, E2,...P (Ei) > 0 for all i ;P (Ei ∩
Ej) = 0 for all i,j,i 6= j; E1 ∪E2 ∪ · · · = S. Let A ⊆ S be any event such thatP (A) > 0.
Then

P (Ej|A) =
p(A|Ej)p(Ej)∑

i
P (A|Ei)P (Ei)

(i) IF event A is ’policyholder does not make a claim in a year’ and E1, E2, E3 are
’policyholder is good, average ,bad risk’ respectively then

p(E1|A) =
0.95× 0.2

(0.95× 0.2) + (0.85× 0.5) + (0.7× 0.3)
=

0.19

0.825
= 0.230

(ii)The corresponding probabilities for E2, E3are 0.425
0.825

= 0.515 and 0.21
0.825

= 0.255.
Hence the joint distribution of x1, x2, x3, the number of policyholders of each type
among non-claimants,is multinomial with these three probability as P1, P2, P3 In a sam-
ple of 4,we require

p(x1 = 2, x2 = 1, x3 = 1) + p(2, 2, 0) + p(3, 1, 0)

= 4!
2!
(0.230)2(0.515)(0.255) + 4!

2!2!
(0.230)2(0.515)2 + 4!

3!
(0.230)3(0.515)

= 0.08337 + 0.08418 + 0.02506 = 0.193.

(iii) Assume that any individual driver is equally likely to make a claim in any
year,and that drivers do or do not make claims independently in different years.
Use Bayes’s Theorem with event B”policyholder does not make a claim in 5 years” Then

p(E1|B) = 0.955×0.2
(0.955×0.2)+(0.855×0.5)+(0.7)5×0.3)

= 0.15476
0.15476+0.22185+00502

= 0.15476
0.42703

= 0.362
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2(a)If Y = No. of arrivals and X = No. turning left, then Y is poisson with mean µ
and X|Y = y is Binomial (y,θ),where 0 ≤ X ≤ y

p(X = x) =
∞∑

y=x
p(X = x|Y = y)p(Y = y)

=
∞∑

y=x

y!
x!(y−x)!

θx(1− θ)y−x e−µµy

y!

= θxe−µµx

x!

∞∑
y=x

[(1−θ)µ]y−x

(y−x)!
= (θµ)x

x!
e−µe(1−θ)µ

= (θµ)xe−θµ

x!
i.e. is poisson mean θµ

(b)Let z=x+y Then

p(Z = z) =
z∑

x=0
p(X = x)p(Y = z − x) since x, y independent

=
z∑

x=0

e−µµx

x!
e−vvz−x

(z−x)!
= e−(µ+v)

z!

z∑
x=0

z!
x!(z−x)!

µxvz−x

= e−(µ+v)

z!
(µ + v)z i.e. by the biomial theorem

so that Z is poisson with mean (µ + v).

3(a)

E[u] =
∫ 1

0

(m + n + 1)!

(m− 1)!(n− 1)!
um(1− u)n−1du

the B(m+1,n) function multiplied by (m+n−1)!
(m−1)(n−1)!

Hence

E[u] =
(m + n− 1)!

(m− 1)!(n− 1)!
× m!(n− 1)!

(m + n)!
=

m

m + n

E[µ2] = the same factor ×B(m + 2, n) =
m(m + 1)

(m + n)(m + n + 1)
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hence
v[u] = E[u2]− (E[u])2 = f m(m+1)

(m+n)(m+n+1)
− m2

(m+n)2

= m(m+1)(m+n)−m2(m+n+1)
(m+n)2(m+n+1)

= mn
(m+n)2(m+n+1)

(b)The region of existence for the density is
hence

f(x) =
∫ 1

y=x
6xdy = [6xy]1y=x = 6x(1− x) 0 < x < 1

Thus x follows Bera(2,2) E[x] = 2
2+2

= 1
2

v[x] = 2×2
(2+2)2(2+2+1)

= 1
20

Also f(y) =
∫ y
x=0 6xdx = [3x2]yx=0 = 3y2 for 0 < y < 1

Therefore y is Bera(3,1) and E[y] = 3
4

v[y] = 3
16×5

= 3
80

E[xy] =
∫ 1

y=0

∫ y

x=0
6x2dxdy =

∫ 1

0
[2x3y]yx=0 =

∫ 1

0
2y4dy = [

2y5

5
]10 =

2

5

Cov(x, y) = E[xy]− E[x]E[y] = 2
5
− 1

2
× 3

4
= 1

40

ρxy = cov(x,y)√
v[x]v[y]

= 1
40
× 1√

3
80
× 1

20

= 1√
3
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4: By independence,the joint probability density

f(x, y) =

1√
2π

exp(−1
2
x2)y

1
2
k−1exp(−1

2
y)

2
1
2
kΓ(1

2
k)

−∞ < x < ∞ y > 0

The given transformation is x = uv, y = kv2

The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

v 0

u 2kv

∣∣∣∣∣∣∣
= 2kv2

Expressing in terms of u,v and multiplying by the Jacobian, the joint probability density
is

f(u, v) = 2kv2 1√
2π

e−
1
2
u2v2 × k

1
2 k−1vk−2e−

1
2 kv2

2
1
2 kΓ( 1

2
k)

= 2
1
2 (1−k)k

1
2 k

√
πΓ( 1

2
k)

vke−
1
2
v2(u2+k) v > 0

f(u) = 2
1
2 (1−k)k

1
2 k

√
πΓ( 1

2
k)

∫∞
0 vke−

1
2
v2(u2+k)dv

= 2
1
2 (1−k)k

1
2 k

√
πΓ( 1

2
k)

2
1
2
(k−1)(u2 + k)−

1
2
(1+k)Γ(k+1

2
)

= 1√
k(1+u2

k
)
1
2 (k+1)B( k

2
, 1
2
)

using the gamma integral Γ(1
2
) =

√
(π)and the relation between beta and gamma func-

tions.
Thus U is the t-distribution with K degrees of freedom.
The given transformation leads to U, the ratio of a N(0,1) and the squareroot of a χ2

(K)

divided by its d.f., independent of N(0,1). This is the situation when a sample mean
from a normal population is divided by an estimate of the standard error of the mean,
leading to t(n−1) which is a pivotal quantity in inference.
n=sample size
NOTE. Credit is of course given for reference to interval estimation and /or significance
testing.
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5.
Mz = E[ezt] =

∫∞
−∞ ezt 1√

2π
e−

1
2
z2

dz

=
∫∞
−∞ e

1
2
t2e−

1
2
(z−t)2dz = e

1
2
t2

since the integral in z is that of a p.d.f. over its whole range and is therefore 1

Mx(t) = E[ext] =
∞∑

x=0

ext e
−µµx

x!
= e−µ

∞∑

x=0

(µet)x

x!
= e−µeµet

= e(et−1)µ

Differentiating and setting t=0 gives moments

M ′
x(t) = µete(et−1)µ; E[x] = M ′(0) = µ

M
′′
x (t) = (µet)2e(et−1)µ + µete(et−1)µ

and
M

′′
x (0) = µ2 + µ = E[x2]

v[x] = E[x2]− (E[x])2 = µ2 + µ− (µ)2 = µ w =
x√
µ
−√µ

and by the usual properties of mgf’s

Mw(t) = e−t
√

µMx(
t√
µ

) = e−t
√

µeµ(e
t√
µ−1)

Thus
ln(Mw) = −t

√
µ− µ + µe

t√
µ

= −t
√

µ− µ + µ(1 + t√
µ

+ t2

2µ
+ t3

6µ
3
2
)

= t2

2
+ t3

6
√

µ
+ · · · → 1

2
t2 as µ →∞

Hence in the limit w has the same mgf as N(0,1),and is therefore distribution as N(0,1).

6
f(xi) = θe−θxi , x > 0 θ > 0 Also F (xi) = 1− e−θxi

F (u1, un) = P (U1 ≤ u1 ∩ Un ≤ un)
= P (Un ≤ un)− P (U1 ≥ u1 ∩ Un ≤ un)
= P (all xi in (0, un))− p(all xi in (u1, un))
= {1− e−θun}n − {e−θu1 − e−θun}n 0 < u1 ≤ un
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The joint pdf is found as ∂2F
∂u1∂un

:

f(u1, un) = n(n− 1)θ2e−u1e−un{e−θu1 − e−θun}n−2, 0 < u1 ≤ un

The alternative derivation using a multinomial distribution is also acceptable.
Transform to R = Un − U1 and T = U1 (so U1 = T, Un = R + T ):

J =

∣∣∣∣∣∣∣

∂U1

∂R
∂Un

∂R

∂U1

∂T
∂Un

∂T

∣∣∣∣∣∣∣

Which is ∣∣∣∣∣∣∣

0 1

1 1

∣∣∣∣∣∣∣
= 1

Thus
f(r, t) = n(n− 1)θ2e−θte−θ(r+t)(e−θt − e−θ(r+t))n−2 (r, t > 0)

= n(n− 1)θ2e−nθte−θr(1− e−θr)n−2 (r, t > 0)

Forf(r), we must integrate out the factor e−nθt from 0 to ∞, since the rest of the ex-
pression does not involve t:

∫∞
0 e−nθtdt = 1

nθ
and so

f(r) = (n− 1)θe−θr(1− e−θr)n−2 (r > 0)

If

v = e−θR, then R = −1

θ
log

e
v so

dR

dv
= − 1

θv
and

f(v) =
1

θv
(n− 1)θv(1− v)n−2 = (n− 1)(1− v)n−2 0 < v < 1

so that v is Beta(1,n-1).

7(a) The c.d.f of v is FV (v) = p(V ≤ v) = p(H−1(u) ≤ v) = p(u < H(v)),which is
equal to H(v) because u is uniform (0,1) and so F(u)=u.Hence v has the same distribu-
tion as x .

(b) Start at a randomly chose point in the table (and if desired ,read in any direction,
not only left-right). Obtain a sequence of 9 digits, e.g. 821 469 344, and takes as the
three pseudo-random U(0,1) variate u1 = 0.821, u2 = 0.469 u3 = 0.344
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(i)For the Binomial(4, 1
4
),p(X = x) and p(X ≤ x) are :

x 0 1 2 3 4
p(X = x) 0.3164 0.4219 0.2109 0.0469 0.0039
p(X ≤ x) 0.3164 0.7383 0.9492 0.9961 1

Since u1 is between the values P (x ≤ 1)and p(x ≤ 2), take the corresponding binomial
observation as 2.For 0.469, take 1 and for 0.344 take 1 again, to give(2,1,1) as the sample
of three items ”randomly” chosen form the binomial.

(ii) In U(a,b),F (x) = x−a
b−a

for a < x < b. Setu = F (x) to give x = a + u(b − a); so
here x = −1 + 2u. The values corresponding to u1, u2, u3 above are x1 = 0.642, x2 =
−0.062, x3 = −0.312.

(iii)If u = Φ−1(x) andx = φ−1(u) Table 1A shows that u10.821 leads to x1 =
0.92; u2 = 0.469 to x2 = −0.08; u3 = 0.344 to x3 = −0.40

8 The transition probability pij = p(j balls in uin at step n|i balls in uin at step (n−
1))
Then

p01 = 1 P0j = 0 (j 6= 1)
pi,i−1 = i

m
pi,i+1 = M−i

M
(i = 1, 2, · · · (M − 1))

pM,M−1 = 1 pMj = 0 (j 6= M − 1)

The states refer to one of the uins

If the stationary probabilities are Π = [Π0Π1 · · ·Πn]T then Πj =
M∑
i=0

ΠiPi,jwhich leads to

Π0 =
1

M
Π1; Πj =

M − j + 1

M
Πj−1 +

j + 1

M
Πj+1 (j = 1, 2, · · · ,M−1); ΠM =

1

M
ΠM−1

Using the given probabilities, Π0

Π1
=

(
M
0

)
/

(
M
1

)
= 1

M

satisfied ΠM

ΠM−1
=

(
M
M

)
/

(
M

M − 1

)
= 1

M

satisfied, For j=1 to (M-1)

M−j+1
M

(
M

j − 1

)
+ j+1

M

(
M

j + 1

)
= M−j+1

M
M !

(j−1)!(M−j+1)!
+ j+1

M
M !

(j+1)!(M−j−1)!

(M−1)!
(j−1)!(M−j)!

+ (M−1)!
j!(M−j−1)!

= (M−1)!
(j−1)!(M−j−1)!

{ 1
M−j

+ 1
j
}

(M−1)!
(j−1)!(M−j−1)!

M
(M−j)j

= M !
j!(M−j)!

satisfying this set of equations since (1
2
)M is a common factor

.
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Statistical Theory & Methods II

1(i) In a uniform distribution over (a,b), the mean is 1
2
(a+b) and the variance is 1

12
(b−a)2

Thus for u(θ, θ + 1), E2[u] = θ + 1
2

and var[u] = 1
12

Suppose {xi} have this distribution, so that E[x̄] = θ + 1
2
(because E[xi] = θ + 1

2
for

i = 1, 2, 3, · · ·n), and E[θ̂] = θ.

v[θ̂] = v[x̄] ==
1

n2
V [

n∑

i=1

xi] =
1

n2
× n× 1

12
=

1

12n

(ii) The c.f.d.of y is

p(Y ≥ y) = p{max
i

(xi) ≤ y}

= p(x1, x2, · · · , xn ≤ y)

=
n∏

i=1
p(xi ≤ y)

= (y − θ)n by independence θ < y < θ + 1

The p.d.f. is the derivative of this,f(y) = n(y − θ)n−1, θ < y < θ + 1

E[y] =
∫ θ+1
y=θ ny(y − θ)n−1dy =

∫ θ+1
θ n{(y − θ) + θ}(y − θ)n−1dy

= n
∫ θ+1
θ (y − θ)ndy + nθ

∫ θ+1
θ (y − θ)n−1dy

= n[ (y−θ)n+1

n+1
]θ+1
θ + nθ[ (y−θ)n

n
]θ+1
θ

= n
n+1

+ nθ
n

= θ + n
n+1

E[y2] =
∫ θ+1
y=θ ny2(y − θ)n−1dy =

∫ θ+1
θ n{(y − θ)2 + 2yθ − θ2}(y − θ)n−1dy

= n
∫ θ+1
θ (y − θ)n+1dy + 2θ

∫ θ+1
θ ny(y − θ)n−1dy − nθ2

∫ θ+1
θ (y − θ)n−1dy

= n[ (y−θ)n+2

n+2
]θ+1
θ + 2θ(θ + n

n+1
)− nθ2[ (y−θ)n

n
]θ+1
θ

= n 1
n+2

+ 2θ2 + 2nθ
n+1

− θ2 = θ2 + 2n
n+1

θ + n
n+2

Hence
V [y] = θ2 + 2n

n+1
θ + n

n+2
− (θ2 + 2n

n+1
θ + n2

(n+1)2
)

= n(n+1)2−n2(n+2)
(n+2)(n+1)2

= n
(n+1)2(n+2)
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(iii)θ̃ = y − ( n
n+1

) is an unbiased estimation for θ

v[θ̃] = v[Y ] =
n

(n + 1)2(n + 2)
.

v[θ̂]

v[θ̃]
=

(n + 1)2(n + 2)

12n2

Both θ̂ and θ̃ are consistent estimators, since they are unbiased and their variances → 0
as n →∞.

2 The power of a test is the probability of rejecting the null hypothesis when the
alternative hypothesis is correct. If the null and alternative hypotheses are both simple,
and the significance level and minimum power are specified, then a lower bound for the
required size can be found.

(i)To test H0 : v = v0 against H1 : v = v1, where v1 > v0, the likelihood ratio:

λ = L(v0)
L(v1)

=
n∏

i=1

vk
0

Γ(k)
xk−1

i e−v0xi/
n∏

i=1

vk
1

Γ(k)
xk−1

i e−vixi

= (v0

v1
)nke

−(v0−v1)
n∑

i=1

xi

The neyman-peason lemma gives the most powerful test as the likelihood ratios test

with critical region C = {x : λ ≤ c} for some c, or C = {x :
n∑

i=1
xi ≤ c

′}, in which

c
′
=

1

v1 − v0

ln{(v1

v0

)nkc}

(ii)The m.g.f of x is Mx(t) = (1− t
v
)−k t < v

so that of sumxi is
n∏

i=1
Mxi

(t) = (1− t
v
)−nk, t < v

Because of the uniqueness theorem for generating functions this implies that y =
n∑

i=1
xi

is Gamma(nk,v).

(iii)For k = 1
n

y is Gamma(1,v), which is exponential(v). If H0is true, Y ∼
exonential(v0), and c

′
must satisfy

α =
∫ c

′

0
v0e

−v0ydy = [−e−v0y]c
′

0 , ı.e. c
′
=

ln(1− α)

vc

The required critical region is then
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C = {x :
n∑

i=1

xi ≤ − ln(1− α)

v0

}

(iv)power is

p(
n∑

i=1
xi ≤ − ln(1−α)

v0
|v = v1) =

∫ − ln(1−α)
v0

0 v1e
−v1ydy

e−v1y|
− ln(1−α)

v0
0 = 1− (1− α)

v1
v0

3 suppose that x = (x1, · · · , xn) is a set of data form a population in which θ is an
unknown parameter. A statistic V (x; θ) is a pivotal quantity of:

(i) q(x; θ) involves θ but no other unknown parameters;

(ii) The distribution of q does not depend on θ, or on any other unknown parameters.
To find a 100z% confidence set for θ, find a set c such that p{q(x; θ) ∈ c} = z since the
distribution of q does not involve θ, c is independent of θ. Then if x take the observed
value x, the confidence set for θ is {θ : q(x, θ) ∈ c}

(i) The distribution function of y is

FY (y) = P (Y ≤ y) = p(− ln x ≤ y) = p(x ≥ e−y) = 1− Fx(e
−y)

The probability density function of y is therefore

fY (y) = e−yfx(e
−y) = λe−λy, y > 0

which is exponential with parameter λ

(ii)Letw = yλ. The w has distribution function

FW (w) = P (W ≤ w)p(y ≤ w

λ
) = 1− Fx(e

−w
λ )

and its density function is

fW (w) =
1

λ
e−

w
λ fx(e

−w
λ ) = e−w w > 0

Therefore w = yλ is exponential with parameter 1.Thus yλ is a function of λ whole
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distribution does not depend on λ. Hence it is a pivotal quantity .

(iii) A 95% confidence interval for λ is {λ : R1 < yλ < R2} where R1,R2 are the
lower and upper 21

2
% points of exp(1); so

∫ R1
0 e−wdw = 0.025, i.e. [−e−w]R1

0 = 0.025, so

e−R1 = 0.975, R1 = 0.025 so
∫ R2
0 e−w = 0.975 requires e−R2 = 0.025, so that R2 = 3.689

Hence a 95% confidence interval forθ is (0.025/y; 3.689/y).

4 The likelihood function based on observations (x1, x2, · · · , xn) i s

L(n)(p) =




n
n∑

i=1
xi


 p

(
n∑

i=1

xi)

(1− p)
n−

n∑
i=1

xi

0 ≤ p ≤ 1

The likelihood ratio is

λ(n) =
Ln(0.35)

Ln(0.70)
= (

0.35

0.70
)

n∑
i=1

xi

(
(0.65)

0.30
)
n−

n∑
i=1

xi

= (0.5)

n∑
i=1

xi

(2.167)
n−

n∑
i=1

xi

(i) In a sequential probability ratio test,

continue sampling if A < λn < B
accept H0 if λn ≥ B
accept H1 if λn ≤ A

where A = α
1−β

= 0.01
0.98

= 1
98

; B = 1−α
β

= 0.90
0.02

= 49.5
Therefore continue sampling if

ln A <
∑

xi ln(0.5) + (n−∑
xi) ln(2.167) < ln B

i.e. −4.585 < −0.6931
∑

xi + 0.7732(n−∑
xi) < 3.902

or −4.585 < −1.4663
∑

xi + 0.7732n < 3.902
i.e. 3.127 >

∑
xi − 0.527n > −2.661

so that 0.527n + 3.127 >
∑

xi > 0.527n− 2.661

Also, stop and accept H0 if
∑

xi ≤ 0.527n− 2.661
and, stop and accept H1 if

∑
xi ≥ 0.527n− 3.127

(ii)

zi = ln(
p0(xi)

p1(xi)
) = xi ln(0.5) + (1− xi) ln(2.167) [i = 1, 2, · · · , n]
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Expect sample size when H1 is true is

E1(n) = (1−β) ln A+β ln B
E1[zi]

= 0.98 ln(1/98)+0.02 ln(49.5)
−0.2532

= −4.41523
−0.2532

= 17.44 (say approx 17.5)

(iii)Plot
n∑

i=1
xi against n, and stop sampling as soon as the sample path goes outside

the ’continue sampling ’ region between the two parallel lines.
For the given data, stop after patient 15,and accept H1

5 In a bayesian analysis, if the prior and posterior distributions belong to the same
family, then this family is said to be conjugate to the distribution yielding the observa-
tions

(i)The prior distribution of θ is

Π(θ)xθ2e−θ/3 θ > 0

and the likelihood function is

L(θ) =
n∏

i=1

e−θθxi

xi!
=

e−nθθ
∑

xi

Π(xi!)
θ > 0
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The posterior distribution of θ is

Π(θ|x) ∝ xθ2e−θ/3e−nθθ

n∑
i=1

xi

= θ
2+

n∑
i=1

xi

e−(n+ 1
3
)θ θ > 0

This is gamma with v = n + 1
3

and k = 3 +
n∑

i=1
xi

(ii)with a squared-error loss function,the bayes estimation θ̃ is the expect value of θ
in the posterior distribution. For y ∼ Γ(k, v), the m.g.f. is

My(t) = (1− t

v
)−k = 1 +

kt

v
+ · · · (k < v)

so that the mean is k/v.
The bayes estimator θ̃ is thus.

E(θ|x) =
3 +

n∑
i=1

xi

1
3

+ n

(iii)The posterior distribution is now Γ(29, 13/3). Using the given result, 26θ/3 ∼
χ2

(58), and so p(39.67 < 266
3

< 82.11) = 0.95 or p( 3
26

< θ < 3
26
× 82.11) = 0.95. The

interval is (4.58; 9.47).

(iv)p(0) = e−θ. A bayes estimate of e−θ is the expected value of e−θ on the posterior
distribution. When y ∼ Γ(29, 13/3),

E[e−θ|x] =
∫ ∞

0
e−θΠ(θ|x)dθ = My(t) evaluated at t = −1

This is ( 13/3
13/3+1

)29 = (13
16

)29

6 (i)Let ni denote the number of values in category i (i=0,1,2,3). The probabilities
of an observation falling into categories of 0,1,2,3 are (1− p)3, 3p(1− p)2, 3p2(1− p) p3.
The distribution of {ni} is multinomal with these probabilities:

p(n0, n1, n2, n3) =
216!

3∏
i=0

(ni!)
(1− p)3n0{3p(1− p2)}n13p2(1− p)

n2p3n3

and
L(p) ∝ (1− p)3n0+2n1+n2pn1+2n2+3n3 for 0 < p < 1
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n0 = 110, n1 = 85, n2 = 20, n3 = 1; hence

L(p) ∝ (1− p)520p128 0 < p < 1

(ii)
ln L = const + 520 ln(1− p) + 128 ln p

and
d(ln L)

dp
= − 520

1− p
+

128

p

also
d2(ln L)

dp2
=

−520

(1− p)2
− 128

p2
< 0

The maximum likelihood estimate of p is found from d
dp

(ln L) = 0; p̂ = 128
648

= 0.198

We need the probabilities in a binomial distribution (3,0.198);

p0 = 0.5168 p1 = 0.3816 p2 = 0.0939 p3 = 0.0077

giving Ei = 216pi, i = 0, 1, 2, 3 Therefore

E0 = 111.63, E1 = 82.43 E2 = 20.28 E3 = 1.66

combine the last two categories:

0 1 2 and 3
Observed 111 85 21
Expected 111.63 82.43 21.94

three items in table one parameter estimated: df=1.

χ2
(1) =

0.632

111.63
+

2.572

82.43
+

0.942

21.94
= 0.12

not significant. No evidence of lack of fit.
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(iii)Applying the centra Limit Theorem, an approximate 90% confidence interval is

p̂± 1.645
√

p̂(1−p̂)
3n

The variance arises in the following way :

E(−d2 ln L
dp2 ) = E[3n0+2n1+n2

(1−p)2
+ n1+2n2+3n3

p2 ]

= n[3p0+2p1+p2

(1−p)2
+ p1+2p2+3p3

p2 ]

= 3n[ (1−p)3+2p(1−p)2+(1−p)p2

(1−p)2
+ p(1−p)2+6p(1−p)+3p2

p2 ]

= 3n( 1
1−p

+ 1
p
) = 3n

p(1−p)

and so the variance is p(1− p)/3n.

For the given data, p̂ = 0.1975 and
√

p̂(1−p̂)
648

= 0.01564, giving the confidence interval
0.1975± 0.0257 or (0.172 to 0.223)

7. Interval estimation .
Classical methods are ”frequentist”. A confidence interval is a random interval, deter-
mined from sample data each time a new sample is selected from the same population,
which has a specified probability of containing the true(population) value of the pa-
rameter being studied. This probability has to be understood in the sense of repeated
sampling from a population, and so it is not entirely clear how the idea applies to a
single sample of data, e.g. from an experiment thus when a 95% confidence interval for
µ is found, in a normal distribution with σ2 unknown, using x̄± t(n−1)s/

√
n

as the limits, repeated sampling could yield the intervals shown, with centers de-
pending on x̄ and width with depending on s2. In the long run, only 5% of these would
be expected not to include the true µ. A Bayesian interval is an interval within which
the parameter falls with specified probability. Because we do not assume the parame-
ters to have a ”true” value but only a posterior distribution (depending on an assumed
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prior distribution and on the available data), this gives a clear definition of the concept
without involving hypothetical ”repeated sampling”. There can be argument about the
assumptions of the prior distribution and the derivation of posterior. If a uniform dis-
tribution is used as prior, the Bayesian approach is similar to the likelihood approach
Because the data have considerable influence, although it is not exactly the same.

The likelihood approach is to include in the interval all values of parameters which
give a log likelihood that is within a certain distance of the maximum likelihood given
by θ̂. Its logical basis is that the likelihoods function represents the plausibility of the
different values of θ, and there can be some argument about this, as well as about choice
of ”certain distance ”. In large samples, the log likelihood is approximately quadratic,the
data assume major importance in the Bayesian approach, and so the these approaches
give similar results.

8. The Kolmogorov-Smirnov test is a goodness-of-fit test for data when the null hy-
pothesis states that they are drawn from the distribution F0(x). This hypothesis c.d.f.
can be calculated for each observed sample value of x, and the sample c.d.f. {F(n)(x)}
is then compared with it. As in the following example, the test uses the set {D(k)} of
differences between these two c.d.f.’s at the points x1, · · · , xn.
If the sample values are ranked so that x1 ≤ x2 ≤ · · · ≤ xn then

F(k)(x) =
{ 0 forx < x(1)

k
n

forx(k) ≤ x ≤< x(k+1) k = 1, 2, · · · , n− 1
1 forx ≥ x(n)

If H0 is F (x) = F0(x) and H1 is F (x) 6= F0(x), and we define D(k) = |F(k)(x) − F0(x)|,
the test statistic is Dn = max

x(1)···x(n)

(D(k)) and Dn is referred to the tables using sample

size n.
H0 is rejected when Dn is above the critical value in the tables. Merits of this test are:
(1) small sample sizes can be used (unlike the χ2 goodness-of-fit test) because Dnhas a
known distribution which can be tabulated; (2) a one-sided alternative hypothesis can
be used (again unlike the χ2 test);(3) a ”confidence band” for an unknown F (x) can be
constructed using this test statistic.
If H0 specifies an exponential distribution with mean 40, then

f(x) =
1

40
e−

x
40 , x > 0

and so

F (ξ) =

ξ∫

0

1

40
e−

x
40 = [−e− x

40 ]ξ0 = 1− e−
ξ
40 , ξ > 0.

Ranked data are 1, 6, 12, 18, 23, 32, 58, 68, 101, 116. n=10.
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k : 1 2 3 4 5
k/n : 0.1 0.2 0.3 0.4 0.5
x(k) : 1 6 12 18 23
F0(x(k)) : 0.0247 0.1393 0.2592 0.3624 0.4373
D(k) : 0.0763 0.0607 0.0408 0.0376 0.0627

k : 6 7 8 9 10
k/n : 0.6 0.7 0.8 0.9 1.0
x(k) : 32 58 68 101 116
F0(x(k)) : 0.6607 0.7654 0.8173 0.9199 0.9460
D(k) : 0.0493 0.0664 0.0173 0.0199 0.0660

D1c = 0.0753, the maximum value of {D(k)}; and since this is much less than the 5%
critical value in the table, 0.409, we do not reject H0. The data seem to be consistent
with the proposed distribution exponential with mean 40.

Applied Statistics I

1. (a) Linear models usually assume that there is random natural variation component
ε which follows a normal distribution; i.e. the variance of the observation which is rep-
resented by this component, is the parameter σ2 in a normal distribution.
If the data are known to be from another distribution, a transformation can help to nor-
malize them and to make σ2 constant: e.g. ln y is useful when y is skew to the right and
approximately lognormal,

√
y is useful for binomial data. These will all allow standard

analysis of variance methods to be used on the transformed data.

If it is known, or discovered from a study of the data such as a plot of residuals
against fitted values, that there is a relation between the magnitude of yi and var(yi),
e.g.σ or σ2 is proportional to µ, then an appropriate transformation can make the vari-
ance of the data roughly constant.

Finally, a model may not be linear (in its parameters) in the original units y, but can
be made so by transformation. A multiplicative model y = αxβ

1x
γ
2x

δ
3 is made ”linear” by

taking ln y = ln α + β ln x1 + γ ln x2 + δ ln x3; a term ε will be added to the right hand
side which will be assume N(0, σ2)

(b)Both data sets are skew to the right, and for both the mean and standard devia-
tion are roughly equal .

(i)Hence a log transformation should be useful. After this, normal-theorem methods,
and t-test, will be valid way of comparing average percentage level.
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(ii) After transformation, using natural logs:

A : 0.9163 −0.2231 0.0000 2.7279 1.6292 1.3863 1.0728 (mean)
B : 2.0149 2.8736 2.9601 3.9279 1.6864 0.7419 2.3675(mean)

variance are σ2
A = 1.2004, σ2

B = 1.2546; n = 6 σ̂2 = 1.2275, the pooled variance for
all the data (clearly σ2

A and σ2
B do not differ significantly)

E[ln B − ln A] = 2.3675− 1.0728 = 1.2947

This is E[ln B
A
]; we will thus find limits for the ratio, rather than the difference in

impurities.
In logarithmic units a 95% confidence interval is :

1.294± T(10)

√
1.2275(

1

6
+

1

6
),

since σ̂2 has 10 d.f. this is 1.2947±2.228×0.6397, i.e 1.2947±1.4252 or (−0.131; 2.720)
Taking exponentials, the 95% limits for B

A
are 0.878 to 15.2

2(i)If both the judges and the piece of beef have been selected at random from a
larger number that were available, then a ”random effect” model is appropriate rather
than ”fixed effects”

(ii)The grand total of x is G = 1103 N = 27 s =
∑

x2 = 57217. The corrected total
sum of squares= 57217 − 11032/27 = 12157.41. The ss for judges= 1

9
(5152 + 2672 +

3212)− G2

N
= 48839.4− 45059.59 = 3779.85

The ss for beef pieces= 1
3
(1212 + · · ·+ 1532)− G2

N
= 3975.41

Souce of V ariation D.F. s.s. M.s. E[M.S.]
judge 2 3779.85 1889.93 σ2 + 9σ2

σ F (2, 16) = 6.78∗
Pieces 8 3975.41 496.93 σ2 + 3σ2

p F (8, 16) = 1.81 n.s.
PResidual 16 4402.15 275.13 σ2

Total 26 12157.41

σ̂2
σ = 179.42, ˆσ2

p = 73.93, σ2 = 275.13

which is the basic ”random variation ” of the process. The additional component σ̂2
p

is the repeat differences between beef pieces, which is relative small; σ̂2
σ is additional

variation between judges, which is larger. These are the variance components. The test
of hypotheses”σ2

σ = 0” and ”σ2
p = 0” are made using the F values given above : there is

no real evidence of difference due to pieces but there is evidence of a judge difference.
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(iii) The variance of each measurement is quite large, suggesting that the judging
process is not very reliable. Besides this, the extra variance of the judges is considerable;
people may be finding it hard to carry out the task in a reliable way. There is not much
suggestion of difference among the beef pieces used.

(iv) P{16σ̂2

χ2
u

< σ2 < 16σ̂2

χ2
L
} = 0.95; 16 are the d.f. of the estimate, and χ2

L, χ2
U . the

lower and upper 21
2
% points of χ2

(16), i.e. 6.91, 28.85. The 95% limits for σ2 are therefore
152.6 to 637.1.

3(a)(i) A stationary time series has the joint distribution of x(t1) · · · x(tn) the same
as that of x(t1 + τ) · · · x(tn + τ) for all {ti} and all τ . In particular, the distributions
of all members of the series are identical (consider n=1),so E(xt) = µ and var(xt) = σ2

for all t .
Any pair of x’s has autocovariance E[(xt − µ)(xt+j − µ)] = zj and autocorrelation
ρj = zj/σ

2, which is the same as ρ−j

The general autocovariance function consists of collection of autocovariance coefficients
at lag τ ,z(τ) = E[(xt − µ)(xt+τ − µ)] and the corresponding autocorrelation function is
z(τ)/z(0).
When fitting an autoregressive process, the highest order coefficient, say αp, measures
the excels correlation at at lag P which is not accounted for by a model going only as
far as (p-1). It is called the pth partial autocorrelation coefficient; plotting it against p
gives the partial autocorrelation function.
A partial autocorrelation function becomes effectively zero at lag p, if an AR(p) process
is an appropriate model.
For a first-order process the theoretical autocorrelation decrease exponentially, but for
higher orders there is no simple shape to identify.

(ii)∇ = xt − xt−1 = at − θat−1 which is a first-order MA process, so long as {at} is
“white noise”. Now∇t is stationary .

(b) The pattern of r̂k for xt suggests non-stationary, while r̂k for ∇t suggests an
MA(1) process for the differences; also Φ̂kk for ∇t is consistence with a first-order pro-
cess. Hence we may propose

∇t = at − θat−1

or xt = xt−1 + at − θat−1 |θ| < 1

After fitting the model, residuals may be examined; any pattern in them can indicate
amendments needed to the model .
The estimate of θ, and its standard error, will show how reliable the model may be
There are general methods (e.g. Box& Pierce) of examining, in large samples, the auto-
correlation coefficients.
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4(i)
y1 = β1 + ε1

y2 = β2 + ε2

y3 = β1 − β2 + ε3

x =




1 1
0 1
1 −1




xT x =

[
1 0 1
0 1 −1

] 


1 1
0 1
1 −1


 =

[
2 −1
−1 2

]
and (x

′
x)−1 =

1

3

[
2 1
1 2

]

xT y =

[
1 0 1
0 1 −1

] 


y1

y2

y3


 =

[
y1 + y3

y2 − y3

]

β̂ = (xT x)−1xT y =
1

3

[
2 1
1 2

] [
y1 + y3

y2 − y3

]
=

1

3

[
2y1 + y2 + y3

y1 + 2y2 − y3

]

(ii)β̂1 = 2995
3

= 998.33 and β̂2 = 920
3

= 306.67 In order to find σ2 = var(ε) we require

residuals. Comparing y1, y2, y3 with their estimates using β̂1, β̂2, we find

ε1 = 1.6667, ε2 = −1.6667 ε3 = 1.6667 ε2
1 + ε2

2 + ε2
3 = 8.3

Residual s.s.=8.3333=residual m.s with 1 degree of freedom, Liquid remaining =β1−β2.

var(β̂1 − β̂2) = v(β̂1) + v(β̂2)− 2cov(β̂1, β̂2)

= 2
3
σ2 + 2

3
σ2 − 21

3
σ2

= 2
3
(8.3) = 5.5556

The estimated β̂1 − β̂2 = 691.6667; t(1;5%) = 12.706; hence a 95% confidence interval is

691.67± 12.706
√

5.5556 = 691.67± 29.95 = 661.7 to 721.6

(iii) Incorporating information on the different variances,

v =




2 0 0
0 1 0
0 0 2


 , v−1 =




1
2

0 0
0 1 0
0 0 1

2




and

xT v−1x =

(
1 0 1
0 1 −1

) 


1
2

0 0
0 1 0
0 0 1

2







1 0
0 1
1 −1




20



so that

xT v−1x =

(
1
2

0 1
2

0 1 −1
2

) 


1 0
0 1
1 −1


 =

(
1 −1

2

−1
2

3
2

)

(xT v−1x)−1 =
4

5

(
3
2

1
2

1
2

1

)

Also

xT v−1y =

(
1
2

0 1
2

0 1 −1
2

) 


y1

y2

y3


 =

(
1
2
y1 + 1

2
y3

y2 − 1
2
y3

)

So the weighted β are found from

β̂w = 4
5

(
3
2

1
2

1
2

1

) (
1
2
y1 + 1

2
y3

y2 − 1
2
y3

)
= 1

5

(
3y1 + 2y2 + 2y3

y1 + 4y2 − y3

)

= 1
50

(
4990
1530

)
=

(
998
306

)

5(i)Because the variables are correlated, all the coefficients of variables already in
the model will change every time a new combination, or a new variable, is introduced.
Part of the combination of x1, for example, will become ”explained” by its relation to
x2 and to x3.

(ii)If a particular item of data (a particular subject) has ”high influence” then es-
timates of parameters in a linear model will alter substantially if that point is omitted
from the data set. A ”high influence ”diagnosis could therefore be a warning that the
parameter estimates are unreliable because they depend heavily on certain of the data
items.
A large standardized residual at a data point indicates that the fitted model does not go
very near to the observed value there (standardized means that assessing fit) This can
give information on how the model might be improved by including extra terms.

(iii)If we use forward selection, begin with x1:

souce S.S. DF M.S. F ratio
x1 2461.8 1 2461.8 225.2

Residual 2787.2 255 10.93
5249.0 256
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Then it is better to add x2 than x3.

x2 after x1 136.5 1 136.5
x1 2461.8 1

Residual 2650.7 254 10.44
5249.0 256

13.07 sig. at 0.1% (critical value appx. 6.74). Adding x3 to x2 and x1 does not signifi-
cantly improve fit

x3 after x1, x2 31.4 1 31.4
x1 and x2 2598.3 2
Residual 2619.3 253 10.35

5249.0 256

3.03 n.s(at 1%). The appropriate model is that containing x1 and x2.
Note:The same result is found by backward selection, beginning with the full model
x1, x2, x3 Omitting x3 does not have any significant effect. After that omitting x1 will
make the fit significant effect worse, and so for x2 although the effect is not so strong.

6(i)

logitΠ = log
Π

1− Π

log to base e.

(ii)The advantage is that we do not need to make any assumption about the way in
which the proportion changes from one age-group to the next; (0,1,2)would assume the
same difference between young and middle ages as between middle and old ages, which
is likely not be true. But the disadvantage is that it uses up an extra degree of freedom
in fitting, which is lost from residual.

(iii)Add terms in x1x2 and x1x3:

logitΠ = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x13

(iv)The total column contains only two items of data. We are therefore fitting a
straight line to just two points, and so there is no residual left with which to test the
goodness of fit.
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(v)x1 = 1, x2 = 0, x3 = 1 identifies females over 60. The fitted value of logit Π is
0.0655 + 1× 0.884 + 0× (−0.1354) + 1× (−0.1953) = −0.0414 so

Π

1− Π
= e−0.0414 = 0.9594 giving Π̂ = 0.9594(1− Π̂)

Or 1.9594Π̂ = 0.9594 so that Π̂ = 0.4897. About 49%are prepared to take part.

7(i)Fisher’s linear discriminant function finds y = aT x which will maximize (µH−µE

σ
)2.

(ii)
∑

has determinant (98× 92)− 572 = 5767
Hence

Σ−1 =
1

5767

(
92 −57
−57 98

)

aT = (µE−µH)T Σ−1 = (9 8)

(
92 −57
−57 98

)
× 1

5767
=

1

5767
(372 271) = (0.0645 0.0470)

i.e. y = 0.0645x1 + 0.0470x2 is the discriminant function.

(iii)
µy(E) = 20× 0.0645 + 19× 0.0470 = 2.183

µy(H) = 11× 0.0645 + 11× 0.0470 = 1.227

and with E,H equally probable the decision rule uses 1
2
(2.183+1.227) = 1.705 as dividing

point in classification. Allocate “honest”if y < 1.075.

σ2
y = 98(0.0645)2 + 2(57)(0.0645)(0.0470) + 92(0.0470)2 = 0.9565

The value of y has a normal distribution with mean 1.227 and variance 0.9565, so
z = 1.705−1.227√

0.9565
= 0.489 is the cut-off value in a N(0,1) above which an incorrect alloca-

tion is made. 1−Φ(0.489) = 0.312 is therefore the probability of incorrect classification.
It is only necessary to consider ’honest’ as there are only two possible classification to
be used.

(iv)
Honest : z = 2−1.227√

0.9565
= 0.790 1− φ(0.790) = 0.215

Exaggerator : z = 2−2.183√
0.9565

= −0.187 φ(−0.187) = 0.426
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Assuming P(honest)=0.9, P(Exaggerator)=0.1. we now have P(incorrect|H)=0.215,
p(incorrect|E)=0.426. Overall probability of incorrect classification is (0.9 × 0.215) +
(0.1× 0.426) = 0.236

8(i)The model is xijk = µ + Si + Ej + (SE)ij + εijk (i, j, k = 1, 2, 3) where µ is a
grand mean consumption level,Si is a fixed effect of speed,Ej a fixed effect of engine size,
and (SE)ij an interaction between speed and size. The random terms ε are mutually
independent, all with mean 0 and variance σ2, drawn from a normal distribution.

(ii)There are three complete replicates of the size-speed combinations. The grand
total G = 1006.1. N = 27 G2/N = 34790.267. The total

∑
x2 = 38253.85; hence

total s.s. = 763.58 speed s.s. = 1
9
(355.72 + 374.32 + 276.12)− G2

N
= 604.64, and that for

Engine = 1
9
(358.82 + 324.12 + 323.22) = 91.57

Total for engine /speed combinations are

1100 1500 1800
30 : 133.9 114.0 107.8
50 : 128.5 123.2 122.6
70 : 96.4 86.9 92.8

ss speeds +engines+interaction= 1
3
(133.92 + · · ·+ 92.82)− G2

N
= 750.97 Analysis of vari-

ance.

Source D.F Sum of squares M.s.
speeds 2 604.64 302.32

Engines 2 91.57 45.79
Interaction 4 54.76 13.69
Residual 18 12.61 0.7006

Total 26 763.58

F(4,18) = 19.53∗∗

The interaction is very highly significant. Result must therefore be interpreted in terms
of the interaction.A graph of mean is useful.

Means E 1100 1500 1800
S : 30 44.63 38.00 35.93

50 42.83 41.07 40.87
70 32.13 28.97 30.93

The stand error of difference between two means is
√

2
3
× 0.7006 = 0.683

“Least significant differences” are

t(18) × 0.683 =





1.43 5%
1.97 1%
2.68 0.1%
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Consumption of 1100cc engine is always significantly above that of the other two sizes,
at any speed.
speeds three sizes show a sharp drop form 50mph to 70mph, and at All three speeds
1500 and 1800 engine do not differ from one another.
At 30mph, all size of engine differ significantly from one another. 1100cc is higher in
consumption at 30mph than at 50, whereas both other sizes are lower at 30 than at
50mph.

Applied Statistics II

1(a)(i) In a linear model, terms are added together, and there is among them a resid-
ual term to explain natural variation which is assumed to follows a normal distribution
whose mean is 0 and variance σ2, which is constant over all the observations made all
terms and all residuals are mutually independent. The model includes term for all the
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source of variation present in the observations made.

(ii) If any systematic variations among observed residuals is detected, a further term
may be required in the model. If there is evidence of non-constant variance (e.g/ larger
observations have larger residuals ) a variance-stablishing transformation such as log
or square root may be appropriate. A complete transformation of a model sometimes
makes it linear in its parameters, e.g a log transformation of a multiplicative model.
When an individual contrast is studied in a block design, calculating the value of the
contrast in each block can overcome non-constant variance.

(b)(i)
yijk = α + τi + kj + Φij + εijk i = 1, 2; j = 1, 2 k = 1 to 6

yijk is an observation, hα the overall mean, τi an effect due to time, kj an effect due to cul-
ture medium, φij an interaction of medium and time, all of these terms being fixed-effect
terms. Finally εijk are a set of i.i.d N(0,σ2) residual terms, There are 6 replicates (as-
sumed “completely randomize”)of the four treatments T12c1, total 140, T18c1, total 223; T12c2, total 156
T18c2, total 192 G = 771 α̂ = 711

24
= 29.625 Mean of T12c1 is 23.333, Which is the pre-

dicted value for each observation there in; similarly we have for T18c1 the prediction
31.167; for t12c2, 26.000; for T18c2, 32.000. Residuals found as observed minus predicted
value, are:

T12c1 : −2.333 −1.333 −0.333 4.667 −3.333 2.667
T18c1 : 0.167 1.833 0.833 0.833 −2.167 −1.167
T12c2 : −1.000 0.000 −2.000 −1.000 3.000 1.000
T13c2 −1.000 2.000 −3.000 1.000 −2.000 3.000

(ii)From the plots on the following page, we use that although the normal proba-
bility plot gives an apparently adequate straight line there is some evidence from the
plot of residuals against fitted values that variance may not be constant. T12c1 is more
variable, and T18c1 less variable than the c2 combinations. with only 6 replications no
firm conclusion can be drawn, however.
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2(a)
D A D C A D C B
C B A B C B A D

Pen I II III IV

Additives are A,B,C,D square = 1 animal.

Source DF
Pens ≡ litters 3

Additives 3
Residual 9

15

pens and litters are confounded.

(II)
A1 A1 B4 B4 C2 C2 D3 D3

A1 A1 B4 B4 C2 C2 D3 D3

Pen I II III IV

1,2,3,4 are litter numbers.

Source DF
Pens ≡ litters ≡ additives 3

Residual(betwen animals within pens) 12
15

pens and additives and litters are confounded.

(III)
A1 C4 C3 D1 C2 A3 A4 D2

D3 B2 A2 B4 B1 D4 B3 C1

Pen I II III IV

Source DF
Pens 3
litters 3

Additives 3
Residual 6

15

(b)(A)This applies to II. A pen is the unit rather than an animal, and the residual
is only within pen variation. For other designs the unit is an animal, and the residual is
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a measure of the overall variation.

(B)This applies to II: see the table given above. There is confounding of all three
source of variation so that only 3 d.f. are used by them.

(c)This applies to II: the suggestion is :

A1 A2 B1 B2 C1 C2 D1 D2

A3 A4 B3 B4 C3 C4 D3 D4

Pen I II III IV

pens≡ Additives in analysis

Source DF
Pens ≡ Additives 3

Litters 3
Residual 9

15

The comment is true but still needs to make a serious assumption of no effect of pens.

(D) This applies to III:only here are pens, Additives and Litters capable of separate
estimation. It is a ’Latin square’ type of analysis in this sense.

(E)This applies to II: see the table in part(a). Litters and additives are not con-
founded in any other design.

(F) This applies t III, because it is the only design in which each pen contains an
animal from each litters.

(G)This applies to III,because we can take out all the three effects,pens litters and
additives, each of which uses up 3 d.f..

3(i) The test of 6 treatments uses all combinations of the 2-level factor W(watering)
and the 3-lever factor F(fertilizer). Total are G2/N = 9032/12 = 67950.75

Fertilizer : O AS MP TOTAL
W Heavy : 154 199 173 526

Light 101 110 166 377
255 309 339 903
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The arrangement was completely randomize.
The corrected total

s.s. = (722 + · · ·+ 812)−G2/N = 72065−G2/N = 4114.25

The treatment

s.s. =
1

2
(1542 + · · · 1662)−G2/N = 3600.75

Source of variation DF S.S M.S
Between treatments 5 3600.75 720.15 F(5,6) = 8.41∗
Within treatments 6 513.50 85.583

Total 11 4114.25

The value of F(5,6) is almost significant at 1%, so there is evidence of difference among
treatments.

(iii) The 5 d.f. for treatments can be divided into 5 orthogonal contrasts, each with
1 d.f., as specified. Denoting waterig levels as H,L:

Treatment HO HAS HMP LO LAS LMP V alue Divisor S.S.
Total 154 199 173 101 110 166

Contrast(a) 1 1 1 −1 −1 −1 149 12 1850.083 ∗ ∗
(b) 0 1 −1 0 1 −1 −30 8 112.500 n.s.
(c) 0 1 −1 0 −1 1 82 8 840.500∗
(d) 2 −1 −1 2 −1 −1 −138 24 793.500∗
(e) 2 −1 −1 −2 1 1 10 24 4.167 n.s.

3600.750

Each contrast can be tested as F(1,6) against the residual mean square, with the result
shown in the final column. Hence watering lever has a very important effect(see(a)),
fertilizing also has an effect (see(d)) and the comparison between the two fertilizers is
different at the two watering levers(see(c)). Heavy watering gives heavies plant roots.
Contrast (d):

mean non− fertilized = 255
4

= 63.75

mean fertilized = 309+339
8

= 81.00

so fertilizing gives heavier plant root,
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Contrast : means H L
AS 99.5 55.0
Mp 86.5 83.0

Heavy watering is beneficial with AS, but not with MP; AS is better than MP under H
but the opposite is true with h.
and (e)give no further information when (c)and(d)have been examined. Since the con-
trasts each have 1 d.f., no further t-test are required as they would be equivalent to F.

(ii)To give the variances of the contrasts expressed in terms of treatment means, note
that each observation has varianceσ2; if the positive and negative terms in the contrast
are based on m and n observations the variance will beσ2( 1

m
+ 1

n
)

(a)Compares 6 observations on H with 6 on L,so var[(a)] = σ2

6
+ σ2

6
= σ2

3
This is esti-

mated by (85.583)/3 so that its SE is 5.34
(b)compares 4 observations on AS with 4 on MP, so var[(b)] = σ2

4
+ σ2

4
= σ2

2
This is

estimated by (85.583)/2 so that SE is 6.54
(c)compares the 4 observations HAS,LMP with the 4 HMP,LAS,and so has the same
variance as (b)and the SE=6.54
(d)compares the 8 observations AS,MP with the 4 control observations and so has

varianceσ2

8
+ σ2

4
= 3σ2

8
so that its SE is estimated as

√
3
8
× 85.583 = 5.67

(e)compares the 6 observations HO,LAS,LMP with the 6 observations LO,HAS,HMP
and so has the same variance as(a),i.e.SE is 5.34

4(i) I is a fractional factorial design which can be used to fit a linear relation be-
tween the response and xA, · · · , xE II gives (k-1)d.f. towards estimating residual, so
that there can be a lack-of -fit test of the fitted model.III are the “axial”points which
allows quadratic and interaction terms to be fitted, so that maximum peak height may
be estimated.

(ii)Using I=ABCDE as defining relation, the aliases are:

A = BCDE AB = CDE BD = ACE
B = ACDE AC = BDE BE = ACD
C = ABDE AD = BCE CD = ABE
D = ABCE AE = BCD CE = ABD
E = ABCD BC = ADE DE = ABC

This allows all the required terms to be fitted
If a 1

4
replicate were to be used, a defining relation could be I=ABD=ACE=BCDE;This

is the best type available Aliases now are
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A = BD = CE = ABCDE
B = AD = ABCE = CDE and similarly forC, D, E
BC = ACD = ABE = DE and similarly forB,E

Thus we alias each main effect with at least one two-factor interaction and so will not
be able to fit all the items needed in the model. The two-factor interaction not in these
alias sets are aliased with other two-factor interactions, causing more difficulty in fitting
the model.

(iii)Completed table is :

Source DF Mean square
Constant term 1 108.17
First Order 5 84.15 F(5,10) = 2.52 ns
Interaction 10 131.80 F(10,10) = 3.95∗

Second order 5 70.91 F(5,10) = 2.12 ns

Lack of fit
Pure error

6
4

}
10 33.396

Total 31

An initial test shows lake of fit is not significant different from pure error (F6,4 = 145)
so there is no evidence of lack of fit.Also we may pool these two estimates of σ2 to have
10 d.f. The only significant part of the model is second order, i.e. quadratic terms.
The fitted second-order model may be used to locate, the maximum or minimum re-
sponses, and the levels of the factors which correspond to these.
Canonical analyzes can also locate ridges, saddle points and other types of interaction.
Contour diagrams, if suitable graphical facilities are available, will allow detailed study
of the patterns of responses rates of change as factor-levers change, experimental regions
for any follow-up work. with 5 factors, They can only be studied three at a time with
suitable choice of fixed values for the other two.
Because the linear terms were not significant, there is likely to be a maximum (or mini-
mum) near the center(00000)

5(a)Fertility relates to the number of live births a woman has had ,i.e. is the “oppo-
site” of childlessness .
Period analysis considers all births occurring in a specified period of time, usually one
year.
Cohort analysis considers all births occurring to a specific group of women, usually to
all those born in a particular year, or all those married in a particular year.

1.

Birth rate = 1000× number of live births

total population
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=
1000× 10122

315000 + 285000
=

10122

600
= 16.87 per 1000 per year

2.

General fertility rate = 1000× number of live births

no.of females aged 15-44

=
1000× 10122

129000
= 78.47 per 1000 females of childbearing age.

3.

Fertility rate of ages 20 to 24 = 1000× no. of live births to females aged 20-24

number of females aged 20-24

=
1000× 3008

20000
= 150.40 per 1000

4.

infant morality rate = 1000× number of deaths under 1 year age

number of live births

=
1000× 210

10122
= 20.75 per 1000 live births

5.

neonatal morality rate = 1000× deaths aged under 28 days

number of live births

=
1000× 126

10122
= 12.45 per 1000 live births

6.

postneonatal morality rate = 1000× deaths aged under 28 days and 1 year

number of live births

=
1000× (210− 126)

10122
= 8.3012 per 1000 live births

7.

stillbirth rate = 1000× number of stillbirths

total live births +stillbirths

=
1000× 200

200 + 10122
= 19.38deaths per 1000 births

8.

perinatal mortality rate = 1000× number of still births+deaths under 1 week

total births live births +still births

=
1000× (200 + 106)

200 + 10122
= 29.65deaths per 1000 births
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9.

Material mortality rate = 1000× number of maternal deaths

total live births +still births

=
3000

200 + 10122
= 0.29deaths per 1000 births

6. Ratio estimators are appropriate
(i)Estimate of total sugar content is Nȳ,where ȳ is the mean sugar content in the
random sample of n oranges. A measurement of the sugar content of each sampled
orange is required.

(b) With the given assumptions ,τ̂y = ȳ
x̄
τx where x̄is the mean weight of the sample

oranges whose mean sugar content is ȳ. For each sampled orange, its sugar content
y and weight x must be measured.

(ii) var(γ) = E[(γ−R)2] where R is the population value of γ,i.e.µy

µx
writing f=n/N,

the estimated variance of a mean of any variate say z,from a finite population
is(1− f)s2

z/n
Now

γ −R =
ȳ

x̄
−R =

ȳ −Rx̄

x̄
≈ ȳ −Rx̄

µx

if n is reasonably large; i.e. γ−R
.
= 1

nµx

∑n
i=1(yi−Rxi) where (xi, yi) are measured

on the ith sample member.Also

V ar(γ)
.
=

1

µ2
x

E[(ȳ −Rx̄)2] =
1− f

nµ2
x

N∑

i=1

(yi −Rxi)
2

N − 1

(iii)

v[γ̂y] = τ 2
xv[

ȳ

x̄
] = τ 2

xv[γ] =
τ 2
x(1− f)

µ2
xn(N − 1)

N∑

i=1

(yi −Rxi)
2

Usually the sum is taken as
∑n

i=1 over the sample values, which is a further ap-
proximation that is acceptable in reasonable sample sizes. However in the present
example we are given extra information and need not make this approximation.
If there is a good positive correlation between x and y as we are told here, then
ratio estimation are more precise than estimates based on y alone. strictly, p > 1

2

is needed for v[ȳR] to be < v[ȳ]

(iv) τx = 1800
∑N

i=1
(yi−Rxi)

2

N−1
= (0.0030)2 x̃ = 0.4 we require v[τ̂y] ≤ 32 (approxi-

mately).Assume f negligible Hence 9 ≥ 18002

(0.4)2
1
n
(0.0030)2 or 3

√
n ≥ 1800×0.0030

0.4
= 13.5
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giving
√

n = 4.5 and so n=20.25 sample about 20 or 21

7(a)When a population is divided into groups or strata, and a (simple) random
sample is taken independently from each stratum, the process is called stratified
random sampling. Proportional allocation is when the sampling fraction f, the
same for all strata,and optimal allocation is when the stratum sample sizes {ni}
are chosen to satisfy conditions such as minimizing the variance of the estimator
ȳst for total cost fixed at C, or minimizing total cost for a given target value of
variance.

(b)vran = (1− f) s2

n
In general, the variance is stratified sampling is

v(ȳsr) =
1

N2

L∑

h=1

Nh(Nh − nh)
s2

h

nh

=
∑

(1− fh)w
2
h

s2
h

nh

with proportional allocation nh

Nh
= n

N
, i.e. wh = Nh

N
= nh

n
; fh = f Thus

vprop = (1− f)
L∑

i=1

whs
2
h

n
=

L∑

i=1

whs
2
h

n
−

L∑

i=1

whs
2
h

N

Using the subdivision of sum of squares as in analysis of variance

(N − 1)s2 =
∑

h

∑
i Nh(yhi

− ȳ)2

=
∑

h

∑
i Nh(yhi

− ȳh)
2 +

∑
h Nh(ȳh − ȳ)2

=
∑

h(Nh − 1)s2
h +

∑
h Nh(ȳh − ȳ)2

Therefore

vran = (1−f)
n(N−1)

[
∑

h(Nh − 1)s2
h +

∑
h Nh(ȳh − ȳ)2]

= vprop − 1−f
n

∑
h whs

2
h + 1−f

n
[
∑

h
(Nh−1)s2

h

N−1
+

∑
h

Nh(ȳh−ȳ)2

N−1
]

= vprop + 1−f
n(N−1)

{∑h Nh(ȳh − ȳ)2 +
∑

h[(Nh − 1)− N−1
N

Nh]s
2
h}

= vprop + 1−f
n(1−N)

[
∑

h Nh(ȳh − ȳ)2 − 1
N

∑
h(N −Nh)s

2
h]

(c)(i)Optimum allocation uses nh = n Nhsh∑L

h=1
Nhsh

n = 100

Values of Nh sh are 3270.2 6131.3 5904.1 6613.2 4140.5 2938.0 and 5209.6,so∑
Nhsh = 34206.9. The values of nh, to the nearest integer, are 10 18 17 19 12 9 15.

35



(ii)Proportional allocation has nh = 100Nh/2010,and these values are 20 23 19 17
8 6 7. The minimum variance is the value of v(ȳst) for

nh =
nNhsh∑

Nhsh

=
L∑

h=1

w2
hs

2
h/nh − 1

N

∑

h

whs
2
h

This reduces to

L∑

h=1

(whsh)
2

nwhsh

(
∑

whsh)− 1

N

L∑

h=1

whs
2
h =

1

n
(
∑

whsh)
2 − 1

N
whs

2
h

The value of this is 17.01832

100
− 343.2788

2010
= 2.725.

For proportional allocation, variance is 1−f
n

∑
whs

2
h

which is 1910
2010

× 343.2788
100

= 3.262

vran = 3.262 + 1910
100×2010×2009

[(394× 20.92) + (461× 10.02) + (391× 2.02)

+(334× 8.22) + (169× 15.82) + (113× 23.82) + (148× 37.52)

− 1
2010

{(1616× 8.32) + (1549× 13.32) + (1619× 15.12)

+(1676× 19.82) + (1841× 24.52) + (1897× 26.02) + (1862× 35.22)}]

= 3.262 + 4.73× 10−6[556547.18− 6106060.81/2010]

= 3.262 + 2.618 = 5.880

Relative efficiencies for optimum and proportional compared with random are
5.880
2.725

= 216% and 5.880
3.262

= 180% respectively.

8(i) ∑

i,j

yij = 165.06, n = 40, ȳ = 4.1265kg/plot.

Hence an estimate of wheat yield perhectare is ŷ = 16× 4.1265 = 66.0kg
s2

b , s
2
ware variances between and within fields, f1 is the sampling fraction for fields

and f2 for plots within frields Also n = 10 and m = 4; N = 100 and M = 16.

s2
b =

1

n− 1

∑

i

(ȳi − ȳ)2

and

s2
w =

1

n(m− 1)

∑

i

∑

j

(yij − ȳi)
2
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i=1 to n, j=1 to m

Field
∑

yij ȳi
∑

y2
ij s2

i

1 15.16 3.790 58.7184 0.420667
2 17.50 4.375 77.6052 0.347567
3 17.14 4.285 73.8004 0.118500
4 18.20 4.550 83.9504 0.389133
5 14.54 3.635 53.5108 0.219300
6 16.28 4.070 67.0088 0.249733
7 16.88 4.220 71.9264 0.230933
8 15.18 3.795 59.7332 0.708367
9 17.02 4.255 73.5652 0.381700
10 17.16 4.290 74.0912 0.158267

165.06 693.910

s2 =
1

39
(693.91− 165.062

40
) = 0.327946

v2
b =

1

9

10∑

i=1

(ȳi − 4.1256)2 = 0.087345

s2
w =

1

30

10∑

i=1

4∑

j=1

(yij − ȳi)
2 =

1

10

10∑

i=1

s2
i = 0.321517

Hence

v̂(ȳ) =
0.9

10
× 0.087345 + 0.1× 0.75

40
× 0.321517 = 0.0084639

so that ŜE(ȳ) = 0.0920, SE of estimate= SE(16ȳ) = 1.472

(ii)For random sampling

v(ȳ) = (1− 400

1600
)(

1

40
)(0.327946) = 0.007994

The ratio of variance multistage: random = 0.008464
0.007994

= 1.0588 giving relative effi-
ciency 1

1.0588
= 0.9445 or 94.45%

(iii)Total cost c = 4n + mn, which must be ≤ 100units. The theoretical variance
of ȳ (whose unbiased estimate is as given in (i)) is

v =
(1− f1)s

2
B

n
+

(1− f2)s
2
w

mn

where s2
B and s2

w are the population values of s2
b and s2

w.
A lagrange method will minimize v + λ(100− 4n−mn) ≡ L say

L = s2
B(

1

n
− 1

N
) + s2

w(
1

mn
− 1

Mn
) = λ(100− 4n−mn)
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∂L

∂n
= −s2

B

n2
− s2

w

mn2
+

s2
w

Mn2
− 4λ−mλ = 0

for max or in
∂L

∂m
=

s2
w

m2n
− λn = 0 when − λ =

s2
w

m2n2

First equation becomes

(4 + m)s2
w

m2n2
=

s2
B

n2
+

s2
w

mn2
− s2

w

Mn2

or
s2

w(4 + m−m)

m2
+

s2
w

M
= s2

B giving m2 =
4

s2
B

s2
w
− 1

M

setting c = 100, i.e. (4 + m)n = 100 will give the value of n.

An unbiased estimator of s2
B is s2

b − (1−f2)
m

s2
w, whose value is 0.087345 − 0.75

4
×

0.321517 = 0.027061 Hence

m2 = 4/(
0.027061

0.321517
− 1

16
) = 184.627 i.e m = 13.59 n = 5.69

Rounding to the nearest integer,the choice is between :

n = 5 n = 6
m = 13 85 102
m = 14 90 108

Since cost = (4 + m)n can not be > 100, we must use m = 14 n = 5, that is use
5 fields and select 14 plots from each
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