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I. STATISTICAL THEORY

1 (a i) Label the 4 men A,B, C,D. Then A may have B or C or D as partner; the

other two are the opposing pair. There are 3 ways. [Alternatively
( 4

2
)

2
= 3].

Label the players M1,M2,W1,W2. Then M1 may play with W1 or W2 as
partner; M2 then has the other woman as partner. There are 2 ways.

(a ii) Suppose n = 4m. (If it is not, then 1 or 2 or 3 players cannot take part).

Groups of 4 can be chosen in ( 4m

4
) ways, and each group can be matched

in 3 ways (as above) giving a total of 3( 4m

4
), where 4m is the multiple of 4

that is as near to n (below) as possible.
Suppose n1 = 2m1 (otherwise leave out one man) and n2 = 2m2 (otherwise
leave out one woman).

Two of each sex may be chosen in ( 2m1
2

) ·( 2m2
2

) ways and the total number

of matches is then 2( 2m1
2

) · ( 2m2
2

).

(b i) ( 10

5
) = 252, as once the first 5 are chosen the teams are chosen completely.

(b ii) Teams each consist of a goalkeeper and 4 others. Team 1 can be completed

in ( 8

4
) ways =70 ways, which defines the selection completely.

(b iii) Label the goalkeepers G1, G2, the strikers S1, S2, S3. Then these are 5 other
players.
We may have, in one team, G1 with S1 or S2 or S3 and choose the other 3

from 5: there are 3 × ( 5

3
) = 30 ways for this. Also G1 may have two of

the strikers and two others in the same team. There are ( 3

2
) = 3 ways for

strikers and ( 5

2
) = 10 ways for others, making 30 ways in all. The total

number of ways is thus 30 + 30 = 60. Choosing one team fixes the other.

2. (i) Y = pX1 + (1− p)X2 is N(1750p + 2000(1− p), p2 · 3002 + (1− p)2 · 4002)

i.e. N(2000− 250p, 104{9p2 + 16(1− p)2})
or N(2000− 250p, 10000(25p2 − 32p + 16)).

(ii) E[Y ] = 2000− 250p and has maximum value (2000) for p1 = 0.

(iii) V [Y ] is minimized when d
dp(25p2 − 32p + 16) = 0

i.e. 50p− 32 = 0 or p2 = 16/25.
The second deviation is > 0, indicating a minimum.

(iv) E[Y |p1 = 0] = £2000. E[Y |p2 = 16/25] = 2000− 250×16
25 = £1840.
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(v) (a) On p = p1 = 0, Y ∼ N(2000, 4002).

P (Y < 1480) = P (Z < 1480−2000
400 ) = P (Z < −1.30) = 0.0968.

(b) On p = p2 = 16/25, Y ∼ N(1840, 104{162

25 − 32×16
25 + 16}).

i.e. N(1840, 16× 104{1− 16
25}) = N(1840, 2402).

P (Y < 1480) = P (Z < 1480−1840
240 ) = P (Z < −1.50) = 0.0668.

Z stands for the standardized variate N(0, 1). Use mixed strategy (b) be-
cause its probability of ruin is only two-thirds of that on (a). His expectation
is lower, but variability is also lower, on (b).

3. p(B) = p = 1
4 . Family size n = 5. The distribution of r, the number with blue

eyes is binomial (n = 5, p = 1/4).

(i) P (0) = (3
4)5 = 243

1024 , so P (at least 1 with blue eyes) = 1 − P (0) = 781
1024 =

0.7627.

(ii) P (at least 3 B | at least 1 B)=P (r ≥ 3)/P (r ≥ 1) = P (r≥3)
781/1024 .

P (3) + P (4) + P (5) = ( 5

3
)(1

4)3(3
4)2 + ( 5

4
)(1

4)4(3
4) + (1

4)5

= 1
1024{10× 9 + 5× 3 + 1} = 106

1024 .

So required answer is 106
1024 ÷ 781

1024 = 106
781 = 0.1357.

(iii) Given that a particular one - the youngest - has blue eyes means that of the
other four, at least two have blue eyes. This is found as P (2)+P (3)+P (4) in

binomial (4, 1/4): ( 4

2
)(1

4)2(3
4)2 +( 4

3
)(1

4)3(3
4)+(1

4)4 = 1
256{6×9+4×3+1}

= 67
256 = 0.2617.

(iv) (a) Using binomial (5, 1/4) and excluding r = 0, the expected number is

1
1−P (0)

5∑

r=1

rP (r) =
1024
781

{1×5×(
1
4
)(

3
4
)
4

+2×10×(
1
4
)
2

(
3
4
)
3

+3×10×(
1
4
)
3

(
3
4
)
2

+

4× 5× (
1
4
)
4

(
3
4
) + 5× (

1
4
)
5

} =
1

781
(5× 81 + 20× 27 + 30× 9 + 20× 3 + 5) =

1280
781

= 1.64.

(b) In binomial (4, 1/4), E[r] = np = 1.
So expected number is 1(youngest) + 1(others) = 2.

(v) Specific information about one child reduces the “subspace” in which we
have to search for the values of r concerning the others.

4. (i) To fit a bolt with X = 9.98, we must have Y between 10.00 and 10.18.

Y ∼ N(10.10, 0.0016). z = Y−10.1
0.04 ∼ N(0, 1).

For Y = 10.0, z = −0.1
0.04 = −2.5,

For Y = 10.18, z = +0.08
0.04 = +2.0.
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P (z < 2.0) = 0.97725. P (z < −2.5) = 0.00621.
We require the difference of these, which is 0.97104.

(ii) Y −X ∼ N(10.1− 10.0, 0.0016 + 0.0009) ∼ N(0.1, 0.0025).
P (fit satisfactorily) = P (0.02 ≤ Y −X ≤ 0.2). Corresponding z values for

0.02, 0.2 are z = 0.02−0.1
0.05 = −0.08

0.05 = −1.60; z = 0.2−0.1
0.05 = +2.00.

P (z < −1.60) = 0.05480, P (z < +2.00) = 0.97725, difference is 0.92245.

(iii) Z ∼ N(10.3, 0.0144). P (Z > 10.06) = P (z > 10.06−10.3
0.12 ), where z ∼ N(0, 1),

i.e. = P (z > −0.24
0.12) = P (z > −2.0) = 0.97725.

(a) Plates are independent, so required probability is (0.97725)2 = 0.95502.

(b) We require 10.08 ≤ Y ≤ 10.26 for nut and bolt to fit. Corresponding z values

are 10.08−10.10
0.04 = −0.02

0.04 = −0.5 and 10.26−10.10
0.04 = 0.16

0.04 = +4.0, above which we

may ignore the probability (strictly it is 0.00003). P (z < −0.5) = 0.30854,
and the required probability is 1− 0.30854 = 0.69146. (strictly 0.69143).
Nut and bolt must fit and bolt go through the holes. Given random choice,
and hence independence, this has probability 0.69146 × 0.95502 = 0.66036
(or 0.66033).

(iv) n = 25, X̄ ∼ N(10.0, 0.0009
25 ) ∼ N(10.0, (0.006)2).

The permitted deviation of X̄ from 10.0 is only 0.01, corresponding to
z = ± 0.01

0.006 = ±1.667. P (z > 1.667) = 0.04779 = P (z < −1.667).
Hence the probability is 2× 0.04779 = 0.09558 of stopping.

5. P (positive)= p. P (no positive in k)= (1− p)k,

(i) and so the probability of a pooled-sample positive is 1− (1− p)k.

(ii) S = m(one for each group) + k individual tests if the group was positive,
taken over each of the m groups = m+kX, where m is the number of groups

and each group has probability 1− (1− p)k of requiring k tests.

Therefore X is binomial (m, 1− (1− p)k).
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(iii) E[S] = E[m] + kE[X] = N
k + k · N

k · {1− (1− p)k} = N{ 1
k + 1− (1− p)k}.

V [S] = k2V [X] = k2m{1− (1− p)k}(1− p)k = Nk(1− p)k{1− (1− p)k}.
(iv) dE

dk = −N
k2 −N d

dk (1− p)k = −N
k2 −N(1− p)k ln(1− p).

(using the result that d
dx(ax) = ax ln a).

For minimum, set dE
dk = 0, giving 1 + k2(1− p)k ln(1− p) = 0.

(v) 1 + k2(0.99)k ln(0.99) = 0, so that k2 = −1
(0.99)k ln(0.99)

.

Find E[S] for k = 10 and 11 (since it must be an integer).

E[S|k = 10] = 9900(0.1 + 1− 0.9910) = 1936.62.

E[S|k = 11] = 9900( 1
11 + 1− 0.9911) = 1936.15.

Take k = 11.

6. (i) P (X ≤ ξ) =
∫ ξ

0

dx

θ
=

ξ

θ
, for 0 ≤ ξ ≤ θ; = 0 for ξ < 0; = 1 for ξ > θ.

E[X] =
∫ θ

0

xdx

θ
=

1
2θ

[x2]θ0 =
θ

2
.

E[x2] =
∫ θ

0

x2dx

θ
=

1
3θ

[x3]θ0 =
θ2

3
; V [X] = E[x2]− (E[X])2 = θ2

3 − θ2

4 = θ2

12 .

(ii) Sampled items chosen at random, hence {Xi} are independent. P (X ≤ x) =
x
θ for each item, all are required to be ≤ x, so probability for n items is (x

θ )n,

when 0 ≤ x ≤ θ. This is F (X(n)), where X(n) is the sample maximum, and

so f(x(n)) = F
′
(x(n)) = nxn−1

θn , when 0 ≤ x ≤ θ, =0 otherwise.

E[X(n)] =
∫ θ

0

nxn

θn
dx = [

nxn+1

(n + 1)θn
]θ0 =

nθ

n + 1
,

E[X2
(n)] =

∫ θ

0

nxn+1

θn
dx = [

nxn+2

(n + 2)θn
]θ0 =

nθ2

n + 2
.
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Hence

V [X(n)] = nθ2

n+2 − ( nθ
n+1)

2
= θ2{ n

n+2 − n2

(n+1)2
}

= θ2

(n+1)2(n+2)
{n(n + 1)2 − n2(n + 2)} = nθ2

(n+1)2(n+2)
.

n+1
n X(n) is unbiased for estimating θ.

V ar[n+1
n X(n)] = (n+1

n )2 nθ2

(n+1)2(n+2)
= θ2

n(n+2) .

The likelihood of a sample {x1, · · · , xn} is 1
θn , (0 ≤ x ≤ θ).

Setting θ̂ = X(n), where is the lowest value of θ possible on the evidence of

the sample values, gives the largest possible value of the likelihood. Hence
X(n) is the m.l. estimator.

(iii) Method of moments estimator θ̃ is found from setting x̄ = E[x], i.e., x̄ = 1
2 θ̃

so that θ̃ = 2x̄. V [θ̃] = 4V [x̄] = 4
nV [x] = 4

n · θ2

12 = θ2/3n.

(iv) n+1
n X(n) is unbiased, and X(n) very nearly so if n is at all large; their

variances are much smaller than that for θ̃, the estimator based on the mean.
Hence, use X(n) if there are a reasonable number of offcuts; if only few,

multiply by the factor n+1
n .

7. (i) Yi = βxi + ei, i = 1, 2, · · · , n, {ei} i.i.d. N(0, σ2).

Likelihood L =
n∏

i=1

{ 1
σ
√

2π
exp[−(yi − βxi)2

2σ2
]},

ln L = Λ = −n ln(σ
√

2π)− 1
2σ2

n∑

i=1

(yi − βxi)2.

∂Λ
∂β

= 0 +
1

2σ2
· 2

n∑

i=1

(yi − βxi)xi and is zero when
∑

(yi − β̂xi)xi = 0 i.e.

∑
yixi = β̂

∑
xi

2 or β̂1 =
∑

yixi∑
x2

i

.

∂2Λ
∂β2

= −
∑

x2
i

σ2
, confirming maximum.

(ii) If now {ei} are N(0, σ2xi),

L =
n∏

i=1

{ 1
σ
√

2πxi
exp[−(yi − βxi)2

2xiσ2
]}

and Λ = −n ln(σ
√

2π)− n
2

n∑

i=1

ln xi − 1
2σ2

n∑

i=1

(yi − βxi)2

xi
.

∂Λ
∂β

= 0 + 0 +
1

2σ2
·

n∑

i=1

1
xi

2(yi − βxi)xi =
1
σ2

n∑

i=1

(yi − βxi).

This is zero when
∑

(yi − β̂xi) = 0 i.e.
∑

yi = β̂
∑

xi or β̂2 =
∑

yi∑
xi

.

6



∂2Λ
∂β2

= −
∑

xi

σ2
, confirming maximum.

The first case (i) has L = Constant− 1
2σ2

∑
e2
i , considered as a function of β;

similarly case (ii) has L = Constant − 1
2σ2

∑ e2
i

xi
. Considering as a function

of β. Thus L is maximized when (i)
∑

e2
i or (ii)

∑
e2
i /xi is minimized (note

the - sign).

(iii)

SUM
X 4.3 4.9 6.5 5.7 7.2 8.3 8.4 9.6 10.1 65.0
Y 123 156 183 183 204 234 270 273 324 1950

XY 528.9 764.4 1043.1 1189.5 1468.8 1942.2 2268.0 2620.8 3272.4 15098.1
X2 18.49 24.01 32.49 42.25 51.84 68.89 70.56 92.16 102.01 502.70
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n = 9. β̂1 = 15098.1
502.7 = 30.034. β̂2 = 1950

65 = 30.000
The regression lines are indistinguishable between the two models. However,
the residuals (difference between y and the value on the line at the same x

- value - i.e. the vertical differences) show a definite tendency to increase as
x increases. For this reason, model (ii) is likely to be better.

8. (a) (i) A binomial distribution with large n and very small p may be approximated
by a Poisson with µ = np. It is desirable that np should be at least 5, but in
addition n should be ≥ 20 and p ≤ 0.1. When all these conditions are met
the approximation will be a good one.
(ii) A Poisson with large mean can be approximated by N(µ, µ). The
approximation will be good for µ ≥ 10, but adequate down to µ = 5.

(b) (i) Poisson, mean 5:

P (4) + P (5) + P (6) = e−5(54

4! + 55

5! + 56

6! )
= 625e−5( 1

24 + 5
120 + 25

720) = 625e−5( 1
12 + 5

144) = 0.49716.

(ii) N(5, 5) with a continuity correction is required: find P (31
2 < X < 61

2) in

N(5, 5). Corresponding r-values are 3 1
2
−5√
5

= −0.6708 and 6 1
2
−5√
5

= +0.6708.

P (z < −0.6708) = P (z > +0.6708) = 0.25117, and so the required prob-
ability is 1 − 2 × 0.25117 = 0.49766. The error is 0.0005, and % error
0.0005
0.49716 × 100 = 0.1%.

Using the continuity correction with µ = 5, and calculating values which we
near to the mean, leads to a very good approximation.

(c) P (0) = e−λt = P (T > t) for the first event observed = 1 − F (t). Hence

F (t) = 1− e−λt and g(t) = F
′
(t) = λe−λt. (t ≥ 0;λ > 0).

[g(t) = 0 unless t ≥ 0, λ > 0 since neither time of events nor rate of events
occurring can be negative.] Use integration by parts.

E[T ] =
∫ ∞

0
λte−λtdt =

∫ ∞

0
td(−e−λt) = [−te−λt]∞0 +

∫ ∞

0
e−λtdt

= [− 1
λ

e−λt]∞0 = 1/λ.

E[T 2] =
∫ ∞

0
λt2e−λtdt =

∫ ∞

0
t2d(−e−λt) = [−t2e−λt]∞0 +

∫ ∞

0
2te−λtdt

=
2
λ

E[T ] = 2/λ2.

Hence V [T ] =
2
λ2
− (

1
λ

)
2

= 1/λ2.
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(d) λ = 5, so that E[T ] = 0.2 and V [T ] = 0.04. For n = 100, a sample mean

T̄ is approximately N(0.2, 0.04
100 ), and the range required is from 0.18 to 0.22,

within 10% of 0.2. The corresponding values of r are 0.18−0.2√
0.0004

= −0.02
0.02 = −1,

and the other = +1. P (r > 1) = 0.1587 = P (r < −1) and so the probability
between these values is 1− 2× 0.1587 = 0.6826.
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II. STATISTICAL METHODS

1. (i) For 1988, x̄1 = 53.4, s1 = 19.7; also n = 750;
for 1990, x̄2 = 55.3, s2 = 19.5; also n = 633.
If µ1, µ2 are the corresponding population means, H0 is µ1 = µ2 (or, strictly,
µ1 ≥ µ2) and H1, to be tested, is µ2 > µ1.

V (x̄2 − x̄1) = s2
1

n1
+ s2

2
n2

= 19.72

750 + 19.52

633 = 1.11816, SE = 1.057.

As these are large samples of date we use a normal (r) test:

r = 55.3−53.4
1.057 = 1.9

1.057 = 1.798.

The form of H1 requires a one-tail test, with critical value 1.645 at 5%.
Hence we reject H0.
A 95% confidence interval for the increase is 1.9± 1.96× 1.057 = 1.9± 2.07,
or (-0.17; 3.97).
If we are certain that there must have been an increase we may prefer to
quote this result as (0, 3.97).

(ii) For 1988, pM = 349
750 = 0.4653 and pF = 0.5347; n = 750.

For 1990, pM = 321
633 = 0.5071 and pF = 0.4929; n = 633.

The hypotheses H0: pM,1988 = pM,1990 and H1 : pM has changed can be
examined in a 2 × 2 table of ‘observed’ frequencies and ‘those expected on
H0’.

OBSERVED(EXPECTED) 1988 1990 TOTAL
MALE 349(363.34) 321(306.66) 670

FEMALE 401(386.66) 312(326.34) 713
750 633 1383

χ2
(1) =

(349− 363.34)2

363.34
+ · · ·+ (312− 326.34)2

326.34
= (14.34)2{ 1

363.34
+

1
306.66

+
1

386.66
+

1
326.34

}
= 205.6356× 0.011664 = 2.40n.s.

There is no evidence of change.

[An alternative method is to use normal approximations for pM : N(p, p(1−p)
n )

in each year and consider the difference. This would be needed if confidence
intervals had been required. ]

2. (a) yij = µ + τi + εij , where yij is the observation measured as the jth of the
items receiving treatment i; µ is a grand (overall) mean term; τi is an effect
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(deviation from mean) due to treatment i; εij are i.i.d. N(0, σ2) residual

terms. There are i = 1 to v treatments, ri replicates of each, and
v∑

i=1

ri = N ,

the total number of items in the experiment.

(b)

“Treatment” ri
∑

yij
∑

y2
ij ȳi

1 6 128.0 2792.00 21.33
2 4 79.4 1582.06 19.85
3 4 90.7 2064.51 22.68
4 3 60.5 1243.25 20.17

17 358.6 7681.82

Although results 1 are rounded to whole numbers, analysis of variance will
have to assume that all observations on all treatments have the same vari-
ance σ2. Also the material used in the trial should have been selected at
random from what was available, and the samples examined under identical
conditions in random order.

(i) Total corrected S.S. = 7681.82−G2/N = 7681.82−7564.35 = 117.47. “Treat-

ments” S.S. =
1282

6
+

79.42 + 90.72

4
+

60.52

3
− G2

N
= 7583.4625− 7564.35 = 19.11.

Analysis of Variance D.F. S.S. M.S.

Treatments(Storages) 3 19.11 6.371 F < 1
Residual 13 98.36 7.566 = σ̂2

TOTAL 16 117.47

We are not given any specific contrasts among storages to be tested, but
even if the whole Treatments S.S. were due to one contrast this would still
not be significant as F(1,13) (19.11

7.566 = 2.52, less than the 5% point 4.67). We

may say confidently, that there are no significant differences among these
“Treatments”.

(ii) Given the result in (i), there could be no change to the inference. [In a
borderline case, some intelligence in looking at individual differences may be
called for, as σ2 may be slightly overestimated.]

3.

Pair A B C D E F G H I J

Sign (Gp.2 - Gp.1) + + + − − + − + + + 7+; 3−
Difference +3 +8 +5 −1 −1 +25 −1 +3 +19 +10

Rank 41
2 7 6 2 2 10 2 41

2 9 8
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(i) The number of + signs should be binomial (n = 10, p = 1/2) on the Null
Hypotheses of no difference between groups (i.e. training methods). Using
a continuity correction, find P (r ≥ 7) in N(5, 5/2):

r = 6 1
2
−5√
2.5

= 1.5
1.581 = 0.949, n.s., so no evidence of difference.

The exact probability P (7)+P (8)+P (9)+P (10) in B(10, 1/2) = 1
210 (( 10

7
)+

( 10

8
) + ( 10

9
) + ( 10

10
)) = 1

210 (120 + 45 + 10 + 1) = 176
1024 = 0.172, and so the

probability of the given result in a 2-tail test (A. H. “there is a difference
between groups”, direction not specified) is 0.344. Again no evidence of any
difference.

(ii) The sum of the positive ranks is 49, and of negative 6. The value 6 is

(approximately) N(1
4n(n + 1), 1

24n(n + 1)(n + 2)), making no allowance for

the ties in the ranks (3 of -1 and 2 of +3). n = 10, the number of non-

zero differences, so n(n+1)
4 = 27.5 and 1

24n(n + 1)(n + 2) = 96.25. Using a

continuity correction, r = 6.5−27.5√
96.25

= −21.0
9.81 = −2.14∗.

At the 5% level, there is significant evidence against the N. H. [Using the
Wilcoxon table, the critical number is 8, and 6, being less than this, is
significant at 5%.]
This test uses the information on numerical sizes of differences, whereas the
sign test does not. All the negative ones were very small.
If the differences had appeared to be normally distributed, a t-test (paired
version) would have been appropriate. This seems very unliablely, since there
is no clustering around a mean, and there are several large values.

4. (A)

1 2
R 11 13 : 24

NR 7 2 : 9
18 15 33

|

More extreme tables are
10 14 : 24
8 1 : 9
18 15 33

and 9 15 : 24
9 0 : 9
18 15 33

Together, these form the “tail” of the distribution when margins are fixed.
probability are

18! 15! 24! 9!
33! 11! 7! 13! 2!

;
18! 15! 24! 9!

33! 10! 8! 14! 1!
;

18! 15! 24! 9!
33! 9! 9! 15! 0!

.

i.e. 18×17×14
55×31×29 = 0.08664; 9×17

31×290 = 0.01703; 17
31×29×15 = 0.00126.

For a 2-tail test of the Null Hypothesis of no difference, the probability is
2(0.08664+0.01702+0.00126) = 0.2098. There is no significant evidence for
any difference between the two drugs.
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(B) The χ2
(1) test also tests the N. H. that the proportions recovering are the

same on each drug. ‘Expected’ frequencies are those given by this N. H. with
the same marginal totals as the ‘Observed’.

OBSERVED (EXPECTED) Drug1 Drug2
Recovered 11(12.65) 13(11.35) 24

Not recovered 18(16.35) 13(14.65) 31
29 26 55

χ2
(1) = (1.65)2( 1

12.65 + 1
11.35 + 1

16.35 + 1
14.65) = 2.7225× 0.296578 = 0.807 n.s.

Again there is no significant evidence against the N. H.

(ii) The inference is the same in this, rather small, trial whether or not the
drop-outs are included. There were 11 drop-outs on each drug, which is a
considerable proportion of patients beginning the trial; however, no particu-
lar reasons for drop-out are known.

5. (i) The Central Limit Theorem says that if {xi} are n independent observations,
all taken from the same distribution with (finite) mean and variance µ and

σ2, then the limiting distribution as n → ∞ of the mean X̄ is N(µ, σ2/n).

Therefore if µ, σ2 are known, the actual form of the distribution of {xi} is
not important provided n is large. However, if the X distribution is skew,
n in practice needs to be very large, 500+, whereas if this distribution is
symmetrical, even though not itself normal, a sample of less than 50 obser-
vations may be adequate for the the approximation to be used. It is the basis
for “large sample” tests of means and differences of means; and can also be
applied to discrete distributions, e.g. in testing proportions.

(ii) If there are systematic differences between “blocks” or groups of items which
have to be used in the same experiment, as well as random variation and
systematic effects of treatments, a linear model (as in 2(a)) needs to contain
a term for blocks: yij = µ + τi + βj + eij , (i = 1 to v, j = 1 to r), where
every treatment, 1 to v, appears once in every block, 1 to r. A “two-way”
analysis of variance, to remove blocks as well as treatments from the total
sum of squares, is required:

SOURCE OF VARIATION D.F.
Blocks r − 1

Treatments v − 1
Residual (r − 1)(v − 1)
TOTAL rv − 1
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The {eij} are required to be i.i.d. N(0, σ2), and an estimate of σ2 is provided
by the residual mean square in this analysis.

(iii) Degrees of freedom is a parameter in a χ2-distribution. The square of a

N(0, 1) variate is X2
(1), and the sum of the squares of n independent N(0, 1)

′
s

is χ2
(n). Thus for X = N(µ, σ2), so that X−µ

σ = r is N(0, 1) the sum of n

independent observations
n∑

i=1

(
xi − µ

σ
)2 is χ2

(n). When µ is not known and

must be replaced by an estimate x̄ from a sample,
n∑

i=1

(
xi − x̄

σ
)2 is χ2

(n−1)

because the n values (xi − x̄) used in the calculation have one constraint

placed on them, namely
n∑

i=1

(xi − x̄) = 0 by definition of x̄. In other applica-

tions of χ2, such as tests in contingency tables or tests of goodness of fit, the
rule for degrees of freedom is “number of independent items of information
minus number of constraints placed on them”. Constraints include fixing the
marginal totals and the grand total in tables when calculating expected val-
ues, and having to estimate parameters from the observed data (e.g. mean
in a Poisson distribution) before expected values can be calculated. In the
analysis of variance, d.f. for total are N − 1 when N observations are avail-
able, v− 1 for v treatments etc. The t-statistic always has the same number
of d.f. as the estimate s2 used in it, e.g. the residual d.f. in the analysis of
variance.

(iv) Confidence intervals often give more information than significance tests
based on the same sample of data. When a parameter (e.g. µ) has been
estimated (by, e.g. x̄) we may set up a Null Hypothesis that µ takes a
certain value and then test whether x̄ is close enough to this for the NH not
to be rejected. However, there is a whole range of values of µ which would
be consistent with the observed value of x̄, and it is this range which forms
a confidence interval. Fox example, if {xi} are taken from N(µ, σ2), with σ2

known, and their mean is x̄, then we know that if i = 1 to n then x̄ has the

distribution N(µ, σ2/n), so that P (−1.96 ≤ x̄−µ
σ/
√

n
≤ +1.96) = 0.95, which

can be written as P (x̄ − 1.96σ/
√

n ≤ µ ≤ x̄ + 1.96σ/
√

n) = 0.95, giving a
95% confidence interval for the true value of µ, based on the sample mean
x̄. With probability 0.95, the interval contains µ. To alter the probability,
or confidence level, to e.g. 90% or 99% the corresponding r-values (N(0, 1))
must be used instead of 1.96, e.g. 1.645 and 2.576. Confidence intervals can
be set up whenever we know the distribution of a parameter estimate, e.g.
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s2 for σ2, b for β in linear regression. If an interval is wide relative to the size
of the estimate, the lack of precision is immediately clear; this information
is hidden in a significance test.

6. If we assume the data follow a normal distribution with mean µ and variance σ2,
then we can use the data (16 observations) to test the Null Hypotheses that

(i) µ ≥ 400, (ii) σ2 ≤ 64 against the Alternatives µ < 400 and σ2 > 64.

The mean of the sample is x̄ = 396.125 and variance s2 = 77.9833.

(i) For the mean, t(15) = 396.125−400√
77.9833/16

= −3.875
2.208 = −1.76, which is just on the

borderline of significance at 5% in a 1-tail test. The evidence from these
data is that the mean is not likely to be ≥ 400.

(ii) For the variance, (n−1)s2

σ2 ∼ χ2
(n−1) i.e. 15×77.9833

64 is χ2
(15) = 18.28, which is

less than the 5% (upper) point of χ2
(15), so there is no evidence to reject the

hypothesis that σ2 ≤ 64, even though the observed value is above this.
With a sample four times as large, i.e. n = 64, assuming the same estimates

x̄ and s2, t(63) would be
√

4, i.e. 2, times as large, providing very strong

evidence against the Null Hypothesis for µ. The variance would be based
on 63 d.f., and the χ2 statistic would be 63×77.9833

64 = 76.76, which is not
significant and so there is still no evidence against the Null Hypothesis for
σ2.

7. (i) If the process is producing individual rejects “at random”, i.e. singly and
at unpredictable instants of time, but at a constant rate over the period
of study, then the number of rejects during a fixed time of observation will
follow a Poisson distribution.

(ii) The mean must be estimated from the data:

x̄ =
1

160
(0 + 49 + 86 + 51 + 44 + 10) =

240
160

= 1.5

Expected frequencies are 160e−1.5(1.5)r/r! for r = 0, 1, · · ·.

r : 0 1 2 3 4 ≥ 5 TOTAL
Obs: 38 49 43 17 11 2 160
Exp: 35.70 53.55 40.16 20.08 7.53 2.98 160

(The last two cells may be combined, but this is not really necessary.)

χ2 has 4 d.f., since 1 parameter had to be estimated and the totals of Obs
and Exp have to be the same.
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χ2
(4) = (38−35.70)2

35.70 + (49−53.55)2

53.55 + (43−40.16)2

40.16 + (17−20.08)2

20.08 + (11−7.53)2

7.53 + (2−2.98)2

2.98

= 3.13, not significance.

There is no reason to reject the hypothesis that the data follow a Poisson
distribution. Therefore the number of rejects per unit time is likely to remain
reasonably constant and they do not arise in any regular or predictable way.

8. (a). The F distribution with (v1, v2) degrees of freedom is the distribution of the

ratio of two χ2 distributions - specifically F (v1, v2) =
χ(v1)

v1
/

χ(v2)

v2
. Therefore,

two independent estimates of variance from the same population, based re-
spectively on (v1 + 1) and (v2 + 1) observations may be compared in an F
distribution. An example of this is in (b), assuming observations normally
distributed.
Also, two sums of squares of normally distributed variables can be com-
pared. An examples is in the analysis of designed experiments (see Question
2), where the residual sum of squares provides an estimate of natural vari-

ation, σ2, and the treatment sum of squares also provides an estimate of
this on the Null Hypothesis of no treatment differences: the actual estimates
are the sums of squares divided by their degrees of freedom, i.e. the “mean
squares”. Hence these mean squares can be compared in an F-test, as long
as observations are normally distributed.
Similarly, in linear regression, the sum of squares of deviations from the fit-
ted “live” provides a test of fit: sums of squares for regression is χ2

(p−1) when

p x-variables are used, and the residual sum of squares is χ2
(n−p). Hence two

mean squares can be found whose ratio will be F (p− 1, n− p) if a linear fit
is adequate.

(b). For men, v1 = 12 and for women, v2 = 10. Calculate s2 = 1
v−1

∑
(xi− x̄)2 for

each sample. For men, s2
1 = 30.3333 and for women s2

2 = 7.3778, F(11,9) =
s2
1

s2
2

= 4.1114∗. Since this is significant at 5% on the Null Hypothesis that the

two variances are equal, we must reject that hypothesis.. Each set of data is
assumed to be from a normal population, there is some suggestion that this
may not be true for the men, but rather there are two sub-populations.
(v2−1)s2

2

σ2
2

÷ (v1−1)s2
1

σ2
1

is the ratio
χ(v2−1)2

χ(v1−1)2
i.e. F (v2 − 1, v1 − 1). Therefore

v2−1
v1−1 ·

s2
2

s2
1
· σ2

1

σ2
2
∼ F (v2− 1, v1− 1), or σ2

1

σ2
2

= (v1−1)s2
1

(v2−1)s2
2
F (v2− 1, v1− 1). Limits for

σ2
1

σ2
2

are 11
9 ·4.1114 ·F (9, 11), where the upper and lower 21

2% points of F (9, 11)

are to be used. The upper point is 3.59. For the lower point, use the fact
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that P (F > F ∗) = P ( 1
F < 1

F ∗ ), where F ∗ is the critical value. But 1
F is also

an F -variable, with upper and lower degrees of freedom interchanged. The
upper 21

2% point of F (11, 9) is 3.92. Hence the required lower 21
2% points

1/3.92 = 0.255. The 95% confidence interval is 5.025× 0.255 to 5.025× 3.59
i.e. (1.2814 to 18.04).
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III. STATISTICAL APPLICATIONS & PRACTICE

1. (i) Missing entries are (∗ indicates cannot be calculated):
Moving Average ∗, ∗, 108.250, 141.913, ∗, ∗.
Difference ∗, ∗, 14.90000, -7.4250, 0.7500, 13.8875, ∗, ∗.

(ii) see next sheet for graph.

(iii) Seasonal effects:

Quarter 1 2 3 4
−7.4250 0.4375 14.9000 −5.7625
−5.2375 0.7500 16.7125 −10.6250
−7.3875 1.3000 8.0500 −3.0375
−8.1750 4.9875 13.8875 −6.8000

MEAN −7.05625 1.86875 13.3875 −6.55625 : 1.64375
Correction −0.41094 −0.41094 −0.41094 −0.41094 (≈ 0)

SEASONAL −7.4672 1.4578 12.9766 −6.9672

(iv) Since the data are given to 1 decimal place, 7.5 should be added to each Q1
item, 7.0 to each Q4 item, 1.5 subtracted from each Q2 item and 13.0 from
each Q3 item, to “deseasonalise”.

(v)

1997 : Q1 Q2 Q3 Q4
50 + 6t : 176 182 188 194

Seasonalised: 168.5 183.5 201.0 187.0

This assumes same general trend and seasonal effects continue.

2. (i) The calculations of sums of squares and products are heavily influenced by
the two point (3.48, 6.05) and (3.49, 6.29). These lead to

∑
(x − x̄)(y − ȳ)

being negative, and hence the slope is negative.

(ii) Removing these two points gives completely different summary line for the
remainder. The new values of sums etc. are:

∑
x = 100.04− 3.48− 3.49 =

93.07;
∑

y = 117.12 − 6.05 − 6.29 = 104.78;
∑

x2 = 436.9760 − 3.482 −
3.492 = 412.6855;

∑
xy = 508.0134−(3.48×6.05)−(3.49×6.29) = 465.0073.

∑
(x − x̄)(y − ȳ) = 465.0073 − 1

21(104.78 × 93.07) = 0.63232.
∑

(x − x̄)2 =

412.6855− 93.072/21 = 0.20812. b̂ = 3.038.

(iii) A regression line has to go through the mean (x̄, ȳ) of all the data. If there
are two (or more) parts to the population or set of data, as here, then it
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does not explain the data well. The sub-populations have to be separated.
In this case there are only two points that are well away from the rest. All
the remaining 21 have their x values (log surface temperature) between 4.2
and 4.6 approximately. For temperatures in this range therefore we can use
the regression line with slope +3.038 as a summary of the relationship. We
do not have enough information to propose relationships outside this range

of x-values (which correspond to y
′
s between about 4.3 and 5.6).

3. A set of data may be fitted by a statistical model, e.g. a linear regression yi =
a+bxi +ei or an experimental design model such as yij = µ+ ti +bj +eij for
randomized complete blocks. The terms {ei} or {eij} are generally assumed

N(0, σ2), independently of one another. After the parameters a, b or µ, {ti},
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{bj} have been estimated the fitted values ŷi = â+ b̂xi or ŷij = µ̂+ t̂i + b̂j can
be found. Then the differences yi − ŷi or yij − ŷij , observed minus expected

(fitted), are the residuals. These residuals should be from the same N(0, σ2)
population. Their sizes should bear no systematic relationship to the sizes
of the corresponding ŷi, ŷij , or (for example) to xi if x represents time in a
set of time-series data or if x is any variable on a quantitative scale such as
a level of fertilized application. Clearly they should cluster around 0 and be
symmetrical. We may examine several of these properties in diagrams. A
useful one is to plot the residuals ei against corresponding fitted values yi.
If the wrong model has been fitted, e.g. a linear regression which should be
a curve, the residuals will show a regular patten, e.g.,

If the values of σ2 is not constant, but increases as y increases, a ‘fan’ shape
may appear.

A skew distribution, rather than normal, will have all the largest residuals
on the same side of 0:
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There may be outliers in the data, which will show up as isolated large values
(positive or negative) of ei:

However, this does not always happen (cf. Qu 2 where the two “odd” points
can be fitted quite well by the first line with negative slope). Normal prob-
ability plotting can also be used to check the assumption of normality. The
residuals, ordered by size, are plotted against the expected values of normal
order statistics. Noticeable non-linearity is a warning that the assumption
may be valid.

4. 2× 2 factorial experiment in 5 replicates, completely randomized.
TOTALS.

Time: H L

1210 73.88 68.93 : 142.81
1240 71.25 71.03 : 142.28

145.13 139.96 285.09

(i) Correction term G2/N = 285.092/20 = 4063.8154.

S.S. for Times = 1
10(145.132 + 139.962)− G2

N = 1.33645

S.S. for Temperatures = 1
10(142.812 + 142.282)− G2

N = 0.01405

S.S. for all “treatments” = 1
5(73.882+68.932+71.252+71.032)−G2

N = 2.46914.
Corrected total S.S. = 4067.00− 4063.8154 = 3.1846.
Analysis of Variance.

D.F. S.S. M.S.

Temperatures 1 0.01405 0.0141

Times 1 1.33645 1.3365

Interaction 1 1.11864 1.1186 F(1,16) = 25.03∗∗∗

3 2.46914
Residual 16 0.71546 0.0447 = s2.

TOTAL 19 3.18460

Since there is a very strong interaction of time with temperature, main effects
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should not be quoted.

(ii) Means are:

Time: H L

Temperature 1210 14.78 14.79
1240 14.25 14.21

A graph shows the results clearly:

The standard error of a single mean is
√

s2/5 = 0.095. Hence at 12400 C,

time has no effect, while at 12100 C time H gives a thicker layer.

(iii) Report should make the point that neither time nor temperature alone
determines the thickness of the layer; also for a thicker layer we should
use the lower temperature and longer time, while the lower temperature
and shorter time gives a relatively thin layer. At the higher temperature,
with either time, the thickness of the layer is between these other two, and
apparently not affected by time.

5. (i) We need to find out whether there are systematic trends along the rows, and
/ or whether one row is likely to do better than the other.
We also want to know whether all the grow-bags came from the same source,
contain the same compost mixture, are the same size, have equally good
drainage, the same thickness of wall so that temperature is likely to be the
same.
Reasons for blocking would be: difference between rows, trend along rows,
different sorts of bag.

(ii) The experimental unit is a bag of 4 plants. We would analyse the total (or
mean) yield of plants per bag. If any plants died, we would need to adjust
for this, so it should be recorded.
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(iii) If there is no known or suspected systematic variation revealed in the answers
to (i), a completely randomized design may be used, with a fully random
choice of 16 bags for each of the four nutrient solutions. This could be
achieved by using a random number table, reading digits in pairs, discarding
pairs 00, 65 - 99, taking the first 16 positions for treatment A, the next 16
for B, the next 16 for C and the others for D, 01 - 64 represent the two rows
with 32 bags in each.
If the answers to (i) indicate likely differences in the positions, make up 16
blocks each of which is as homogeneous as possible. Number the bags 1,2,3,4
in each block and permute these numbers at random to determine the order
in which the 4 nutrients will be allocated to bags.

(iv) For the completely randomized design, the analysis is:

Source of Variation D.F.
Nutrients 3
Residual 60
TOTAL 63

Using blocks of 4 in a randomized complete block design gives:

Source of Variation D.F.
Blocks 15

Nutrients 3
Residual 45
TOTAL 63

6. Since we have a table of frequencies in various categories, an appropriate Null
Hypothesis is that the ratio Good:Fair:Poor is the same in each area. A χ2

(8)

test is suitable. “Expected” frequencies are calculated from margin totals as
usual, e.g. Ruthven / Good is 680×3689

5842 = 429.39.

OBS(EXP) Good Fair Poor
Area R 459(429.39) 178(210.56) 43(40.04) : 680

M 926(969.29) 506(475.32) 103(90.39) : 1535
W 954(930.77) 442(456.43) 78(86.79) : 1474
D 985(995.82) 507(488.32) 85(92.86) : 1577
A 365(363.72) 176(178.36) 35(33.92) : 576

3689 1809 344 5842
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(Rounding expected frequencies is to the nearest 0.01).

χ2
(8) =

∑ (0−E)2

E = 2.04185 + 1.93340 + 0.57977 + 0.11756 + 0.00450 + 5.03492

+1.98027 + 0.45620 + 0.71458 + 0.03123 + 0.21882 + 1.75918
+0.89024 + 0.66530 + 0.03439 = 16.46∗.

This indicates that there are departures from a constant ratio in some ar-
eas. Comparing observed and corresponding expected frequencies shows that
Ruthven has more ‘Good’ and less ‘Fair’ than expected; Mossmont has less
‘Good’ and more ‘Fair’ or ‘Poor’; Windgyle has more ‘Good’ and less ‘Fair’
or ‘Poor’; Dundonan has more ‘Fair’ and less ‘Good’ or ‘Poor’.

(ii) Since respondents rate their own health this is very subjective and unlikely
to produce the same ratings for the same condition in different people or
areas. Also we obtain relatively little information per person and so require
a large number of observations.
Actual measurements on a smaller number of people could provide data
on blood pressure, cholesterol, weight and many other objective ways of
assessing health, as well as observing the presence or absence of infections,
and the general environmental conditions such as air quality.

7. (i) For type A, min = 171; lower quartile, q = 396.5; median, M = 1
2(568+795) =

681.5; upper quartile, Q = 1158; max = 2415.
For B, min = 212; q = 298.5; M = 447.5; Q = 823.5; max = 1678.

The two distributions are distinctly skew, since the medians are not in the
middle of the boxes made by the quartiles, and also the upper whiskers are
very long. The variability in the distributions appears not to be the same
either.

(ii) The t-test requires symmetry (strictly normality) of sets of data and, at least
approximately, the same variance. Since neither of these seems very likely
in the populations from which the samples were drawn, a Mann - Whitney
test is preferred. This requires data to be of similar shape, but that is more
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reasonable. The Null Hypothesis will be that the populations have the same
median values. The ranks of Type A are: 1, 4, 8, 9, 13, 14, 16, 17, 20, 21,
25, 28, 30, 32, 33, 34, 35, 37, 38, 40; and of type B: 2, 3, 5, 6, 7, 10, 11, 12,
15, 18, 19, 22, 23, 24, 26, 27, 29, 31, 36, 39.
Rank sums are: A, 455; B, 365. [check: sum = 820 = 1

2 · 40 · 41]. The mean
of all ranks is 410, and the normal approximation to rank sum has variance
1
12 · 20 · 20 · 41, i.e. s.d.= 36.97.

(This form of the test is usually called Wilcoxan’s Rank Sum test.)

Hence r = 455−410
36.97 = 1.22 is approximately N(0, 1); the value is not signifi-

cant, so there is no evidence that medians differ.

8. A dot - plot for each set of data, on the same scale, is useful.

(i) 923 for C seems highly unlikely. This level may be physically impossible, to
judge from all the other observations. Or it may be a recording error for 293
(or even 329).

(ii) Residual S.S. = 19 × 19797 = 376143; hence treatment S.S. = 70262 and

M.S. = 35131. The variance ratio is then 35131
19797 = 1.77.

The analysis, by itself, suggests that there are no significant treatment dif-
ferences, and also that the standard deviation of an observation is very large

(
√

19797 = 140.7).

(iii) Revised sums and S.S. are:

A B C TOTAL
Sum 2533 2308 1097 5938

n 8 9 4 21
Sum of squares 826145 602898 305129 1734172

Treatments SS = 25332

8 + 23082

9 + 10972

4 − 59382

21 = 1694737−1679040 = 15697.
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and Total SS = 1734172− 59382/21 = 55132.

Source of variation DF Sum of Squares M.S.

Treatments 2 15697 7849 F(2,18) = 3.58∗

Residual 18 39435 2191
TOTAL 20 55132

F is just significant at 5%. The estimated variance of an observation is 2191,
S.D. = 46.8. Means are: A, 316.6; B, 256.4; C, 274.3. Var[x̄A − x̄B] =

s2(1
8 + 1

9) = 517.32, S.D. = 22.7, t(18) = 60.2
22.7 = 2.65∗, so A and B appear

to differ. Var[x̄A − x̄C ] = s2(1
8 + 1

4) = 821.63, S.D. = 28.7, t(18) = 42.3
28.7 , not

significant. A and C do not differ; nor will B and C.

(iv) The one doubtful observation greatly increased the variance estimate.
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